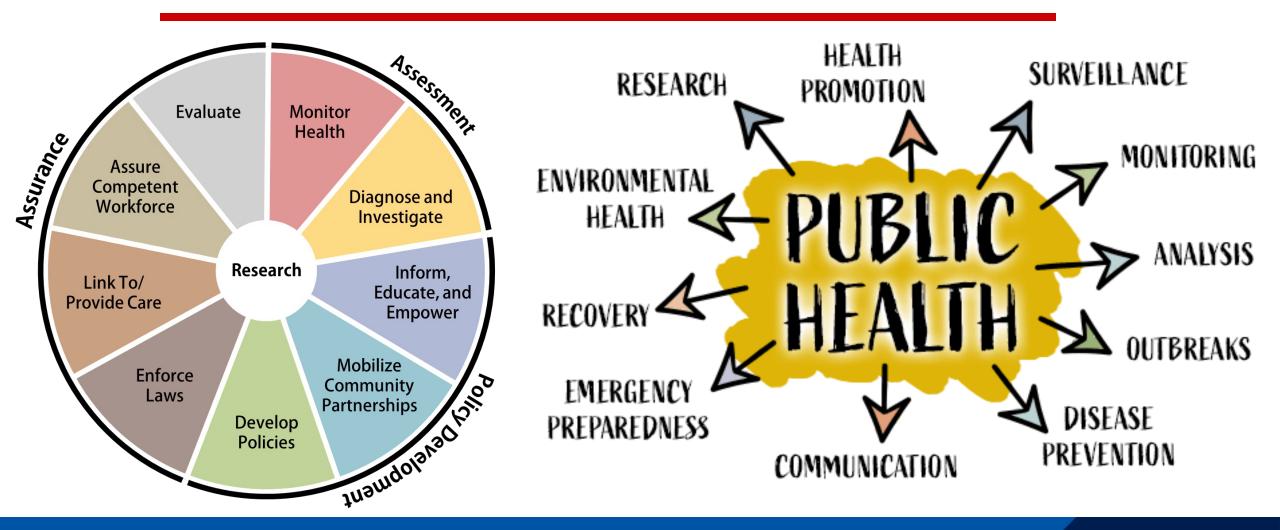

With So Much COVID-19 Data, Why Didn't We Have Better Information About the Pandemic?

Anne L. O'Keefe, MD, MPH
Prof and Vice Chair of Public Health
Creighton University School of Medicine
Formerly, Senior Epidemiologist, DCHD


Iowa SAS Users Group One-Day Meeting May 22, 2023


With So Much COVID-19 Data, Why Didn't We Have Better Information About the Pandemic?

Anne L. O'Keefe, MD, MPH
Prof and Vice Chair of Public Health
Creighton University School of Medicine
Formerly, Senior Epidemiologist, DCHD

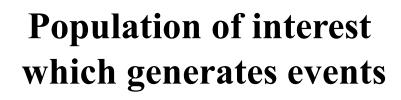
Nebraska SAS Users Group One-Day Meeting May 23, 2023

Essential Public Health Services

Local Public Health System

Epidemiology

- The study of the distribution and determinants of disease in a population
 - Smoking as a risk factor for lung cancer
 - Hand washing as a protective factor against illness
 - Contribution of age to motor vehicle crashes
 - Cell phones and crashes
 - Source of foodborne outbreaks
- Epidemiologic Methods
 - Randomized, Controlled Trials (RCTs)
 - Observational Studies (Prospective, Retrospective)
 - Case Series



Public Health Surveillance

 "Ongoing systematic collection, analysis, and interpretation of outcome-specific data for use in the planning, implementation, and evaluation of public health practice."

Surveillance System Components

Measurement and recording

Transactional data

Data Management

- Quality checks
- Editing

Public health response

Interpretation for associations, trends, unusual patterns, signals

Analytical applications

Data preprocessing for a specific purpose ('views', 'data marts')

Uses of Public Health Surveillance

- Estimate magnitude of the problem
- Determine geographic distribution of illness
- Portray the natural history of a disease
- Detect epidemics/define a problem
- Generate hypotheses, stimulate research
- Evaluate control measures
- Monitor changes in infectious agents
- Detect changes in health practices
- Facilitate planning

National Notifiable Diseases Surveillance System (NNDSS)

- CSTE/CDC collaboration
- List revised at annual CSTE meeting, case definitions agreed upon
- Health care providers, laboratories report to local HD (county)
- County HD submits reports to State
- Voluntary reporting by states to CDC
- Reportable diseases vary by state

EFFECTIVE 5/11/10	NEBRASKA DEPARTMENT OF HEALTH AND HUMAN SERVICES	173 NAC 1				
TITLE 173	COMMUNICABLE DISEASES					
CHAPTER 1	REPORTING AND CONTROL OF COMMUNICABLE DISEASES					
TABLE OF CONTENTS						
SECTION	SUBJECT	PAGE				
1-001	SCOPE AND AUTHORITY	1				
1-002	DEFINITIONS	1				
1-003	WHO MUST REPORT	2				
1-003.01 1-003.01A 1-003.01B 1-003.01C	Health Care Providers (Physicians and Hospitals) Reporting by PA's and APRN's Reporting Lead Analysis Electronic Ordering of Laboratory Tests	2 2 2 2				
1-003.02	Laboratories	2				
1-004	REPORTABLE DISEASES, POISONINGS, AND ORGANISMS: LISTS AND FREQUENCY OF REPORTS	3				

1-004 REPORTABLE DISEASES, POISONINGS, AND ORGANISMS: LISTS AND FREQUENCY OF REPORTS: The following diseases, poisonings, and organisms are declared to be communicable or dangerous or both to the public. Incidents of diseases, poisonings, and organisms must be reported as described in 173 NAC 1-004.01 through 1-004.03, 1-005, and 1-006.

1-004.01 Immediate Reports

<u>1-004.01A</u> The following diseases, poisonings, and organisms must be reported immediately:

Anthrax (Bacillus anthracis^)* ‡

Botulism (Clostridium botulinum^)*

Brucellosis (Brucella abortus^, B. melitensis^, and B. suis^* ‡

Cholera (Vibrio cholerae^) ‡

Coccidiodomycosis (Coccidioides immitis/posodasil^)*

Diphtheria (Corynebacterium diphtheriae) ‡

Eastern equine encephalitis (EEE virus^)*

Food poisoning, outbreak-associated

Glanders [Burkholderia (Pseudomonas) mallei^]* ‡

Haemophilus influenzae infection (invasive disease only)^ ‡

Hantavirus pulmonary syndrome (Sin Nombre virus)

Hemolytic uremic syndrome (post-diarrheal illness)

Hepatitis A (IgM antibody-positive or clinically diagnosed during an outbreak)

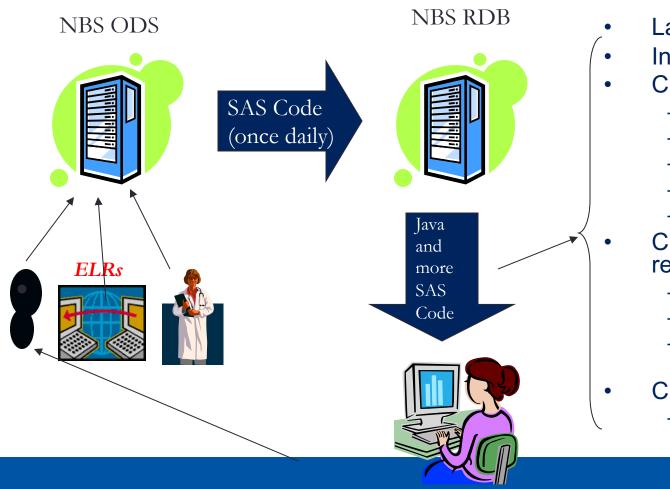
Influenza due to novel or pandemic strains (includes highly pathogenic avian influenza virus^)*

Measles (Rubeola)

Melioidosis [Burkholderia (Pseudomonas) pseudomallei]*‡

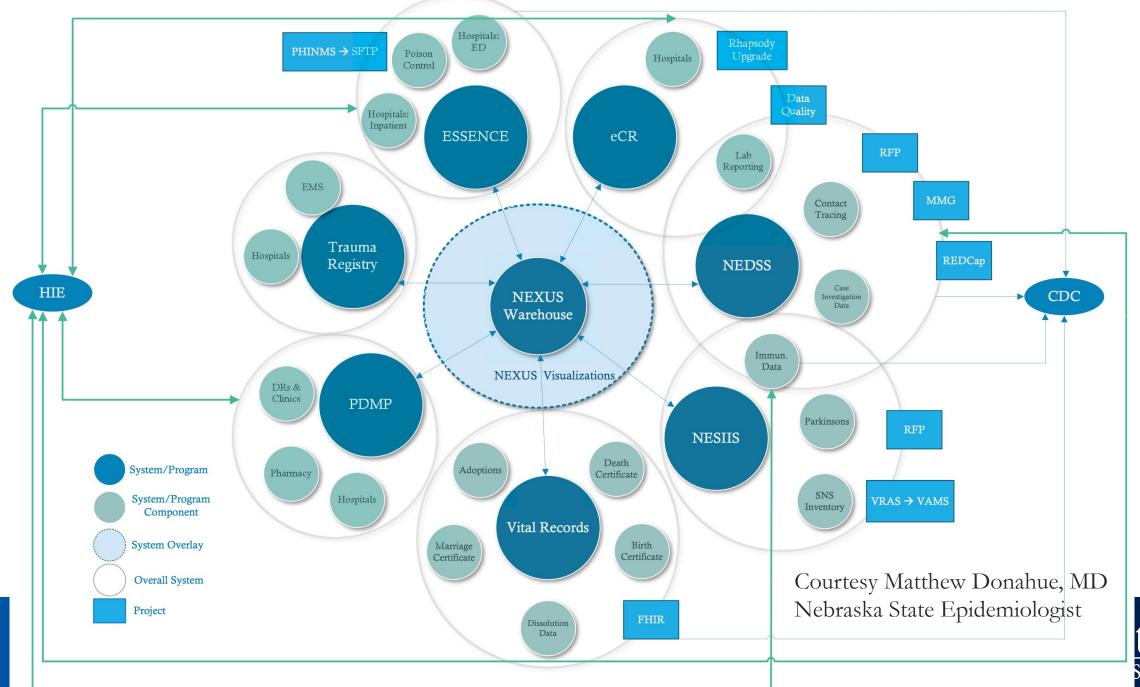
Meningitis (Haemophilus influenzae^ or Neisseria meningitidis^)

Meningococcal disease, invasive (Neisseria meningitidis^)


Monkeypox virus infection*

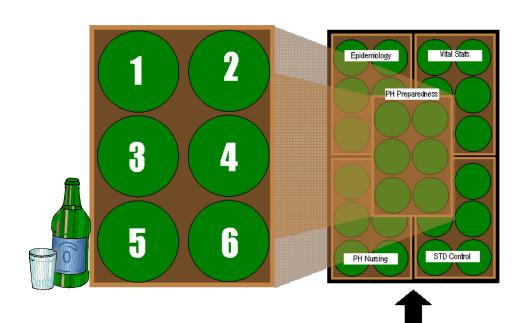
Pertussis [whooping cough] (Bordetella pertussis^)‡

Plaque (Yersinia pestis^)*±



NE NEDSS Data Flow

- Lab Report Datamart
- Investigation Datamart
- Custom Datamarts
 - Hepatitis
 - Pertussis
 - Latent TB Infection
 - Mumps
 - WNV
 - Custom "canned" reports
 - Daily lab rpt line list
 - Open investigations
 - Monthly and YTD counts
- Custom data extracts
 - DBF formatted for import into
 NETSS/EPI6



- 1. Community Leadership and Coordination
- 2. Early Detection and Ongoing Surveillance
- 3. Disease Investigation, Control and Community Mitigation
- 4. Mass Distribution and Vaccination
- 5. Communication of Essential Information
- 6. Environmental Surety

Six Essential Functions of Emergency Preparedness

Environmental Health

Community Health and Nutrition

Health Data and Planning

Douglas County Health Department and its mission

Epidemiology in a pandemic

- Do we have a new disease and what are the symptoms
- Who is it affecting, what are the risk factors
- How severe is it?
- How is it changing

2009 H1N1 Influenza

- Community leadership
- Early detection
 - Douglas Co.'s first case (just days after pandemic identified)
 - Visitor from Southern California
 - Presented to VA emergency department
 - 'Astute clinician' contacted public health
- Ongoing surveillance
 - Enhanced influenza surveillance
 - Monitor strain, antiviral resistance, populations affected, duration of outbreak, institutional outbreaks
- Disease investigation, recommendations to schools
- Vaccine allocation and distribution
- Communication with public, providers

Pandemic Indicators

- #/Rate cases
- % positivity
- #/Rate deaths
- # of COVID patients in hospital/on vent-ICU
- Hospital capacity
- CDC Community Transmission
- CDC Community Level
- #/Rates vaccinated/up-to-date

Laboratory Testing

- Early: public health laboratories only
- Scale-up: rapid development of lab capacity
- NE DHHS work to ingest rapid expansion of lab testing data HL7 messaging
- Home testing

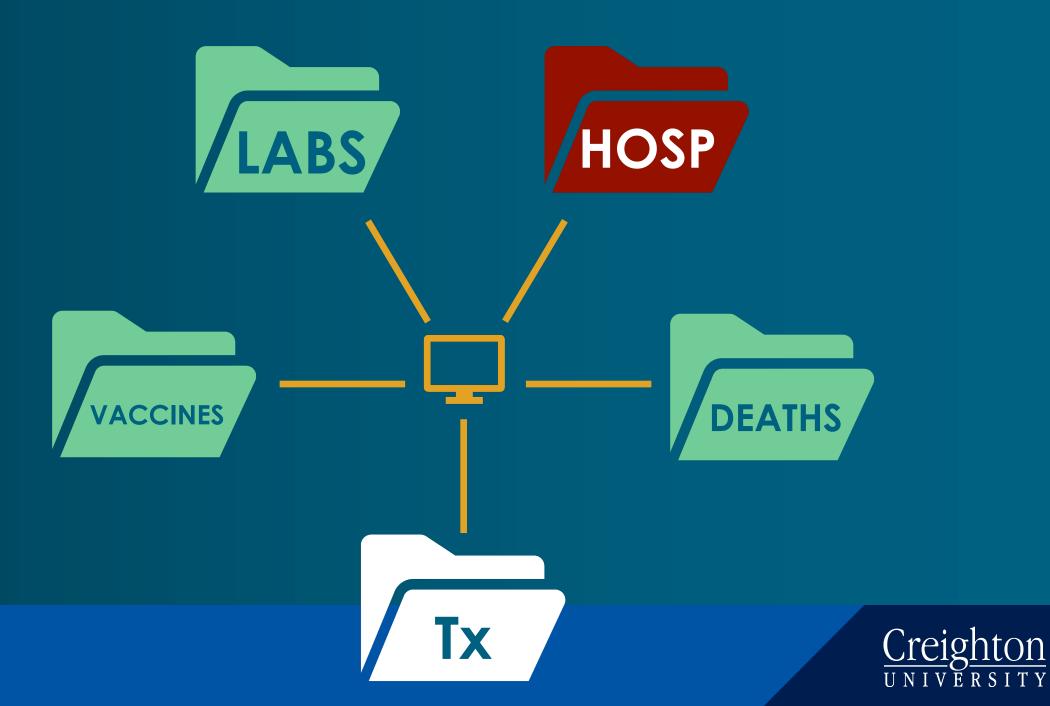
Electronic Laboratory Reporting (ELR)

- Laboratory information systems each unique
- Each lab translates it's codes to standard LOINC and SNOMED codes
- Set up filter for reportable diseases, automatic secure message with key information for each reportable result
- Into NEDSS system, assigned to program area and jurisdiction

Pandemic Indicators Based on Labs

- Laboratory-Confirmed Cases
- Percent Positivity
- CDC Indicators
 - Community Transmission

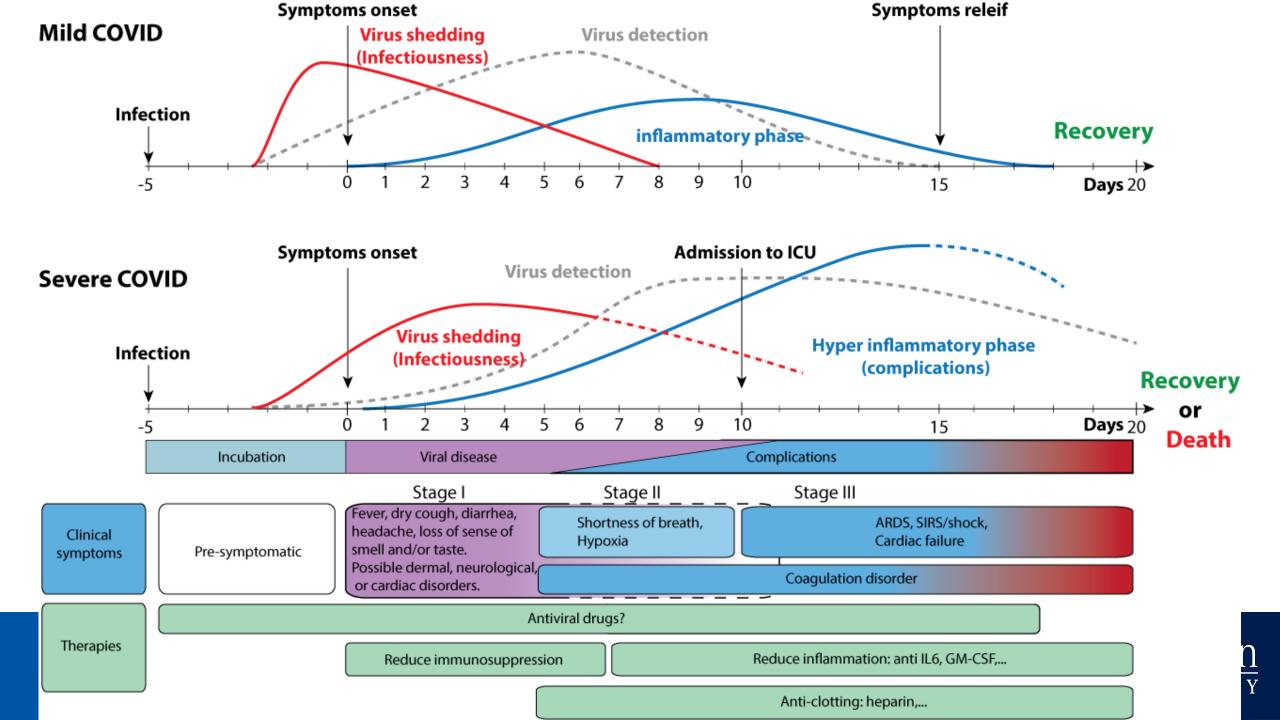
CDC's Indicators of Community Transmission

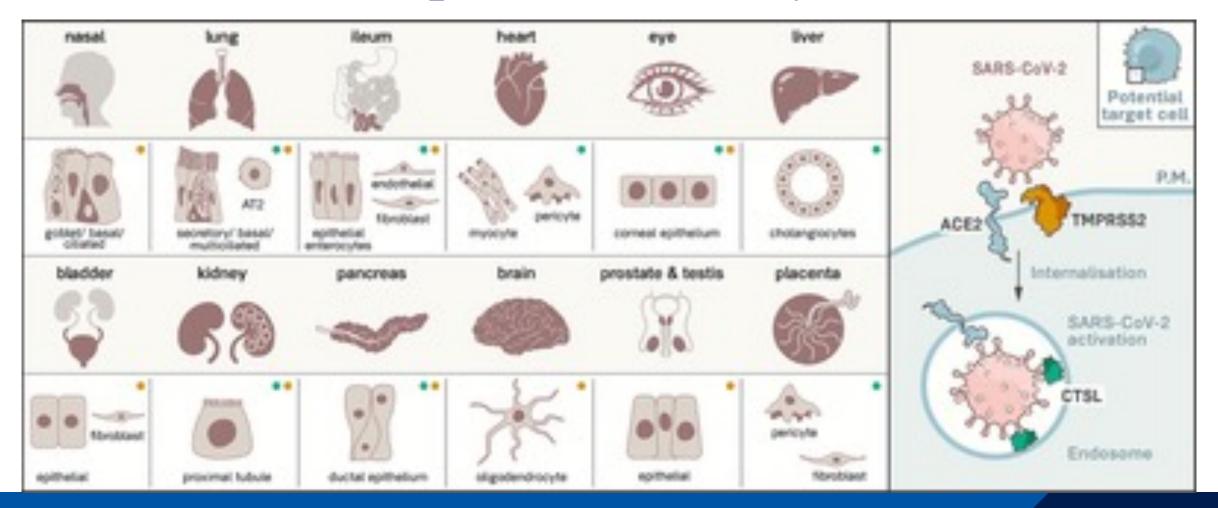

Indicator	Low Transmission	Moderate Transmission	Substantial Transmission	High Transmission
Total new cases per 100,000 persons in the past 7 days	0-9	10-49	50-99	≥100
Percentage of Nucleic Acid Amplification Test results that are positive during the past 7 days	<5.0%	5.0%-7.9%	8.0%-9.9%	≥10.0%

- First released in September 2020
- Relied on two metrics to define community transmission: Total new cases per 100,000 persons in the past 7 days, and percentage of Nucleic Acid Amplification Test results that are positive during the past 7 days
- Used by CDC to inform setting-specific guidance and layered prevention strategies (e.g., screening testing in schools, masking, etc.)
- Public health practitioners, schools, businesses, and community organizations also rely on these metrics to inform decisions about prevention measures

Needed more real-world monitoring of:

- Incidence and Prevention of severe disease
 - Hospitalized with history of infection, risk factors
- Effectiveness of vaccine to prevent infection, illness, severe illness, long covid, death
- Effectiveness of treatment of disease on preventing death, severe disease long covid




Clinical Data

- Electronic Health Record/Health Information Exchange
- purpose document clinical information / billing for insurance
- access HIPAA, data use agreements, costs
- Laboratory data clinical
- Long-term care data
- Hospital reporting NHSN HHS Protect
- Prescription drugs PDMP

SARS-CoV-2 Receptors On Variety of Human Cells

CDC's COVID-19 Community Levels and Indicators

New Cases (per 100,000 population in the last 7 days)	Indicators	Low	Medium	High
Fewer than 200	New COVID-19 admissions per 100,000 population (7-day total)	<10.0	10.0-19.9	≥20.0
	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	<10.0%	10.0-14.9%	≥15.0%
200 or more	New COVID-19 admissions per 100,000 population (7-day total)	NA	<10.0	≥10.0
	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	NA	<10.0%	≥10.0%

The COVID-19 community level is determined by the higher of the inpatient beds and new admissions indicators, based on the current level of new cases per 100,000 population in the past 7 days

CHOOSE TODAY!

Get your booster vaccination against COVID-19 at your local pharmacy, doctor's office, or health dept.

VACCINATED WITHOUT UPDATED BOOSTER

2x

LOWER RISK OF DEATH

VACCINATED WITH UPDATED BOOSTER

17x

LOWER RISK OF DEATH

Over the last 20 weeks, people who were vaccinated without an updated booster were 2X less likely to die from COVID-19 and people who were vaccinated with an updated booster were 17X less likely to die from COVID-19 compared with people who were not vaccinated.

About the Analysis

The 20-week (Sept 01, 2022, to Jan 28, 2023) period was considered in the analysis as bivalent vaccines were approved on Septembe 1, 2022.

Records having immunosuppressive conditions along with COVID-19 were excluded from the analysis Vaccination Data: Obtained from Nebraska State Immunization Information System (NESIIS)

Death Data: Obtained from Nebraska vital records death certificate dat

Incidence Rate Ratios (IRRs) for vaccinated without an updated booster for the past twenty weeks were calculated by dividing the average weekly incidence rates among the unvaccinated population by that among the population vaccinated without an updated booster. IRRs for those vaccinated with an updated booster for the past twenty weeks were calculated by dividing the average weekly incidence rates among the unvaccinated population by that among the population vaccinated with an updated booster. Vaccine effectiveness was calculated based on the formula VE = 1 - Rate vaccinated / Rate unvaccinated Age-adjusted VRS were calculated by IRR = 1/ (1-Age-adjusted VE)

Authors: Sai Paritala and Yi Du

NEBRASKA

Good Life. Great Mission.

DEPT. OF HEALTH AND HUMAN SERVICES

Death certificate data, not hospitalization data

How well does <u>infection-induced</u> immunity work?

How vulnerable are we to another big surge?

How long does it last?

How well does it protect against infection, hospitalization, and death?

Does it prevent long-COVID-19 or complications like MIS?

How well does cross-variant immunity work?

Creighton UNIVERSITY

We have vaccine effectiveness but what about <u>nuance</u>?

How long do vaccines work?

Against infection, hospitalization, and death?

How does effectiveness differ per variant?

Is there one brand that's better?

What boosting timeline is most effectiveness?

Are these answers different across age groups, races, ethnicities, medical comorbidities, or rural/urban residence?

What about <u>antiviral</u> effectiveness

How well does nirmatrelvir-ritonavir work IN Nebraska? Who is accessing it and where are the missed opportunities?

Epidemiologists: Please Stand Up

