Recent Developments in Survival Analysis with SAS® Software

Marc Huber Senior Analytical Training Consultant SAS Institute Cary, NC, USA

About Marc

- Masters in Quantitative Psychology from the University of North Carolina at
 Chapel Hill
- Biostatistician at Duke University Medical Center and UNC-Chapel Hill for 14 years
- Senior Analytical Training Consultant at SAS
- Develop and teach courses in survival analysis ... and other stuff.
- At SAS since 2004

LIFETEST

computes the Kaplan-Meier estimate of a survivor function and provides the log-rank test to compare the underlying hazards of two or more samples of right-censored data. You can also use this procedure to study the association between the failure time and a number of concomitant variables.

ICLIFETEST

computes nonparametric estimates of survivor functions for interval-censored data. You can use this procedure to compare the underlying survival distributions of two or more samples of interval-censored data.

PHREG

fits the Cox proportional hazards model and its extensions. **ICPHREG**

fits proportional hazards regression models to intervalcensored data. You can select a piecewise constant function as the baseline hazard function, or you can model the cumulative baseline hazard function by cubic splines.

SURVEYPHREG

is a Cox modeling procedure similar to PROC PHREG, appropriate for analyzing data that are collected from a survey sample.

PHSELECT

fits the Cox proportional hazards model and its extensions. The PHSELECT procedure is specifically designed to operate in SAS Viya and performs computations in multiple threads. **RMSTREG**

performs data analysis that is based on the restricted mean survival time (RMST) when the proportional hazards assumption is violated.

LIFEREG

fits parametric models to failure time data that can be leftcensored, right-censored, or interval-censored. The log of the survival time is modeled as a linear effect of covariates and a random disturbance term, the distribution of which includes the Weibull, log-normal, and log-logistic distributions.

QUANTLIFE

performs quantile regression for survival data by modeling the quantiles of the lifetime variable as a function of the covariates.

LOGISTIC

can perform discrete time survival analysis, provided the data is expanded appropriately (one observation per person, per unit time, for all time up to event or censoring).

SEVERITY

procedure in SAS/ETS software can be used to model survival data.

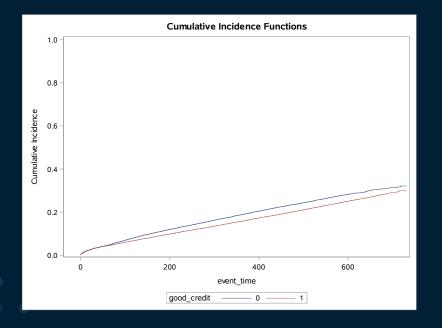
RELIABILITY

Procedure in SAS/QC suite that provides tools for reliability and survival data analysis and for recurrent events data analysis.

LOGISTIC

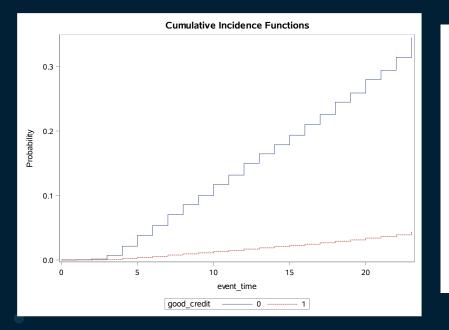
can perform discrete time survival analysis, provided the data is expanded appropriately (one observation per person, per unit time, for all time up to event or censoring).

SEVERITY


procedure in SAS/ETS software can be used to model survival data.

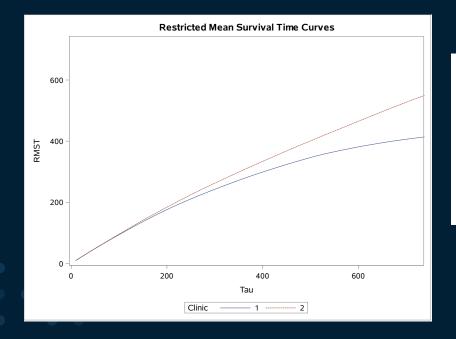
RELIABILITY

Procedure in SAS/QC suite that provides tools for reliability and survival data analysis and for recurrent events data analysis.


Some Features You Might Not Know About – LIFETEST Fine and Gray's Competing Risks

• • • •

Some Features You Might Not Know About – PHREG Fine and Gray's Competing Risks



proc phreg data=wirelessmonthly
 plots(overlay=stratum)=(cif);
 model event_time*event_type(0)
 = good_credit dealer_type
 rate_plan / eventcode=2;
 baseline covariates=cif /
 rowid=good_credit;
rup;

run;

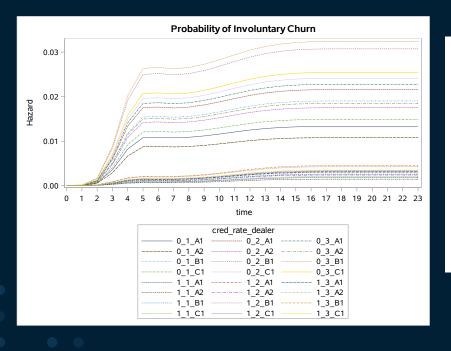
Some Features You Might Not Know About – PROC LIFETEST Restricted Mean Survival Time



proc lifetest data=methadone rmst(tau=730) rmtl(tau=730); Time Time*Status(0); Strata Clinic; run;

Copyright © SAS Institute Inc. All rights reserved.

Some Features You Might Not Know About – PROC RMSTREG



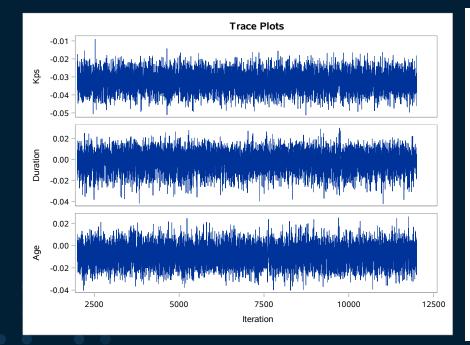
proc rmstreg data=methadone tau=730; class Clinic Prison; model Time*Status(0) = Clinic / link=linear method=pv;

run;

Some Features You Might Not Know About – Discrete Time Logistic Model

proc logistic data=Expand_Wireless; class dealer_type rate_plan; model category(event='1') = gc gc*spl1 gc*spl2 gc*spl3 gc*spl4 spl1-spl4; code file="model1.txt"; run;

Some Features You Might Not Know About – Frailty Model in PROC LOGISTIC


Type 3 Tests					
	Wald	D		Adjusted	Adjusted
Effect	Chi-Square	F	Pr > ChiSq	DF	Pr > ChiSq
Treat	4.8961	1	0.0269	0.9587	0.0252
Туре	2.6395	1	0.1042	0.6795	0.0629
Treat*Type	7.1349	1	0.0076	0.9644	0.0071
ID	110.3922	•	•	74.2788	0.0042

proc phreg data=Blind; class ID Treat Type; model Time*Status(0)=Treat|Type; random ID;

run;

S.sas

Some Features You Might Not Know About – BAYES Statement in PROC LOGISTIC

proc phreg data=VALung; class Prior Cell Therapy; model Time*Status(0)=Kps Duration Age Prior Cell Therapy; bayes seed=1 coeffprior=normal(input=Prior) statistics=(summary interval) diagnostics=(autocorr ess) plots=trace;

run;

.

Questions

Copyright © SAS Institute Inc. All rights reserved.

Online. Everyday.

"I always learn something new when I post in this forum. Just what I needed..."

SUPPOR

SAS Statistical Procedures Community

Communities.sas.com/stat-procs

Copyright © SAS Institute Inc. All rights reserved.