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Hierarchical Data Structures

- Hierarchical data structures are those in which multiple micro-level units
are sampled tfor each macro-level unit.

- A common hierarchical data structure is when individuals (micro-units)
are sampled from naturally occurring groups (macro-units).

Population
Level 2 Group 1 Group 2 Gro-upj
Leve[ 'I Case 1 Case2 | Case n, Case 1 Case 2 | Case n,
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Dependence in Hierarchical Data

- Because many micro-level observations come from the same
macro-level unit, this produces dependence in the data.

+ Students attending the same school might have more similar academic outcomes
than students attending different schools.

- Employees working with the same manager might have more similar problem-
solving strategies than employees working with different managers.

- Multilevel models provide a way to model this dependence,
whereas more traditional models do not.
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Longitudinal Data Structures

- Longitudinal data structures arise when the same units are sampled
repeatedly over time.

- Longitudinal data are useful for tracking change in an outcome over time
(for example, response to a drug).

Population
Level 2 Subject 1 Subject 2 Suk;jectj
Level_ 'I Time 1 Time 2 | Time n, Time 1 Time 2 | Time n,
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Dependence in Longitudinal Data

- Because repeated measures are collected on the same unit, this
broduces dependence in the data.

- Example: Employee job performance is tracked over a period of
four years.

- Some employees perform at consistently higher levels compared to other
employees.

« Some employees increase in performance at a steeper rate over time compared to
other employees.

- Again, multilevel models provide a way to model this dependence,
whereas more traditional models do not.
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The High School and Beyond (hsb) Data Set

- Data are from a 1982 survey of US public and catholic high schools.
— /7,185 students from 160 schools.

- 90 public schools, 60 catholic schools.
- 14 to 6/ students per school.

— Variables:
- Math achievement score for student

« Socio-economic status of student’s tamily, centered at zero
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The High School and Beyond (hsb) Data Set

Questions of Interest
- How much do US high schools vary in mean math achievement?
- |s math achievement related to student SES?

* |s the strength of the relationship between SES and math scores similar across
schools? Oris SES a more important predictor of some schools and not others?

* How do public and Catholic high schools compare in mean math achievement
and in the strength of the SES-math achievement relationship?
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Multilevel Modeling

- Multilevel modeling does not incorporate schools as a fixed effects

bredictor, but rather treats schools as randomly sampled from a
hopulation.

~ Effects are not estimated individually Tor each school but are
assumed to have a particular distribution across the population of
schools.

- Nested data structure

- Level 1 = students

~- Level 2 = schools
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The MIXED Procedure

General form of the MIXED procedure:

PROC MIXED options;
CLASS classification variables;
MODEL outcome = fixed-effects / options;
RANDOM random effects / options;

RUN;
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Fixed Effects Regression Model

Math Achievement
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Fixed Effects Regression Model
Level 1 Equation:
Math, =b,; +b, SES; + &, & ~ N(0,07%)

_evel 2 Equations:

bOj — ﬁoo
blj — /310

Reduced-Form Equation:

Mathy; = Sy, + £,SES; + &,

-~
Fixed-Effects
GSsas
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Fixed Effects Regression Model

Reduced-Form Equation:

Math,, =k,8m + ,BmSESﬁ +&;

Y
Fixed-Eftects

proc mixed data=mixed.hsb cl covtest;
model student mathach = student ses / solution;
run;
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Fixed Effects Regression Model

Assumes Independence ot All Observations

Covariance Parameter Estimates
Cov Parm Estimate 5tandard Error | £ Value | Pr=Z Alpha  Lower Upper
Residual 41,1500 [.bobG oS Y <0001 005 359040l 425380

41.16 = Level 1 variability of math achievement scores

Solution for Fixed Effects

Effect Estimate Standard Error DF  tValue Pr= |t
Intercept 12,7474 007569 7183 1e3.42 <0001
student_ses 3.18349 009712 7183 23278 <0007

12.75 = expected math achievement of a student from an average SES tamily
3.18 = expected increase in math achievement per one-unit increase in SES Gsas
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Random Intercepts Model

Math Achievement
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Random Intercepts Model

Level 1 Equation:
Math; =by; +b,;SES; +&; & ~N(0,57)
Level 2 Equations:

bOj :IBOO_I_b*Oj
blj ::Blo

Reduced-Form Equation:

b*Oj ~ N(O, 0200)

Math; = (,300 +Db*, )_I_ﬂlOSESij T &)

= (,Boo T ﬂlOSESij ) + b*Oj T&j;
\ ~ e
Fixed- Random-
Effects Effect

CCCCC ight © SAS Institute Inc. All rights reserved.
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Random Intercepts Model

Reduced-Form Equation:
Math, = (,,+b*,, )+ B,SES, + ¢,

= (B + BoSES, ) +b%,, +s,
\ ~ J
Fixed- Random-
Effects Effect

proc mixed data=mixed.hsb cl covtest;

model student mathach = student ses / solution ddfm=bw;
random intercept / subject=school id;
run;

Copyright © SAS Institute Inc . All rights reserve d.
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Random Intercepts Model

Covariance Parameter Estimates
Cov Parm | Subject @ Estimate S5tandard Error Z Value | Pr=Z | Alpha | Lower| Upper
Intercept  schoal D 4. 7Bh5 0 b545 F.28 <0001 005 37045 b.3bSB
Residual 37 0346 0 B254 a2 <0001 005 358308 38.2916

4.77 = Variability of the school intercepts - significantly different from zero
37.03 = Level 1 variability of math achievement scores

Solution for Fixed Effects

Effect Estimate S5Standard Error| DF | t Value | Pr = |
Intercept 12.B575 0.18580 159 734 <0001
student ses 2. 3503 0057 7024 22B1 <0007
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Random Slopes and Intercepts Model
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Math Achievement

25

20 -

15 -

10 -

|
——————— - B
-
——””“"- ----------------‘
S T - Y
T aae==TT L)
SIS o8
———————— o)
-1.2 -0.6 0 0.6 1.2
SES

0sas



Random Slopes and Intercepts Model

Level 1 Equation:
Math, =by; +b, SES; +¢; & ~N(0,0°)
Level 2 Equations:
e B
b,; = B, +b*; 0% 0) o, O

Reduced-Form Equation:

I\/Iathij = (,BOO + b"‘Oj )+(,810 + b*1j )SESU. + &;
(Boo + BSES; ) +(b*,; +b*,; SES; )+ &,

J

(. J — _J
Y Y

Fixed- Random-
Effects Effects GSsas
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Random Slopes and Intercepts Model

Reduced-Form Equation:

% 2 |
Math, =(ﬂm+b*ﬂj)+(ﬂm+b*u)SESg+g¥. [b DJJWN [0] [cr .
b*, . 0/\ &, o&°
= (B + BoSES, )+(b*,, +b*  SES, )+¢, g i o %)
AN J A
h'd Y .
Fixed- Random- G matrix
Effects Effects
proc mixed data=mixed.hsb cl covtest;
model student mathach = student ses / solution ddfm=bw;
random 1ntercept student ses / subject=school id type=un g gcorr;

run,

0sas
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Random Slopes and Intercepts Model

Covariance Parameter Estimates

Cov Parm 5ubject Estimate 5tandard Error £ Value PrZ Alpha Lower| Upper

UN([1.,1) schaal 1D 4 .58278 0.b7 15 £.18  =.0001 005 37406 B.4716

UN(2,1) schoal 1D 01547 0. 25955 152 06O 005 07402 04305

UN(2,2) schoal 1D 04127 0. 2350 176 00395 005 017300 1.9415

Residual ab.Ga04 0.B253 58.52 <0001 0.05 | 35.6274 5005956
4 .82 = Variability of the school intercepts signiticantly different from zero
-0.15 = Covariance of intercepts and slopes negative, not different from zero
0.41 = Variability of the school slopes signiticantly different from zero

36.83 = Level 1 variability of math achievement scores

Solution for Fixed Effects

Effect Estimate Standard Error DF  t Value | Pr = [i
Intercept 12.BB51 01893 | 1549 LE.7Z <0001
student ses 2. 35950 01131 7024 20027 <0007
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Comparison of Models

Fixed Effect Parameter

Model Effects Variance Parameter Estimates : Model Fit
Estimates
: Variance of |Variance of| Covariance Slope
Student | Residual
Intercept SES Slobe| variance Random | Random [of Intercept Intercept | Student AIC
P Intercept | SES Slope | and Slope SES

Fixed Fixed 41.20 12.74 3.18 47,106
Random | Fixed 37.03 4.77 12.66 2.39 46,649
Random | Random 36.83 4.83 0.41 -0.15 12.67 2.39 46,648

Ggsas




Estimated School Relationships

School-specific Lines

proc mixed data=mixed.hsb cl covtest;

model student mathach = student ses /
solution
ddfm=bw
outpred=predicted;

random intercept student ses /
subject=school 1d
type=un;,

20

15 -

Predicted

run; 10 -
title 'School-specific Lines’;
proc sgplot data=predicted;
series y=pred x=student ses /
group=school 1d;
run; quit;

student_ses
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A Comment on Notation

Popular social science textbooks SAS and statistics texts
( (
Level1: 4 Yj; :ﬁOj_I_ﬁleij_l_rij ¢ Y :bOj_I_bleij_I_gij
\ \
4 _ 4 — x
:BOj =Yoo T VorWj + Up; bOj _ﬂoo+ﬂ01wj+b 0]
Level 2: < < «
. ﬂlj = Y10 T 71uWj T Uy \ blj = Do 1311Wj D 1)
_ 2 _ 2
", ~N(,0%) " &; ~N(0,07)
Variance: |4 | Upj | \ To Ty, I < _b*oj_ N (0 _GZOO I
LY \_O- Lt ]y . _b*lj_ \_O_ Oy 0211 y

Copyright © SAS Institute Inc. All rights reserved.



Longitudinal Data: Time Nested within a Child

Copyright © SAS |

nstitute Inc.

Achievement (y,)

0 1 2. k]
Time (x;)
Level 1
Vi =By +0,; X +&;

Achievement (y;;)

child j=1
by
by, child j=2
bo;
bog
bos 3 child j=3
| | | |
0 i > 3
Time (x;)
Level 2
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Combinations of Fixed and Random Effects

— random intercept

— fixed slope

Yi

izl

Inedil
e
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model y=time;
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1
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random intercept tImE/SUbJECt—Id type=un;
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Homoscedastic versus Heteroscedastic Level 1

— Homoscedastic Level 1
residual variance matrix
for T time points (equal
variance at all time points)

— Heteroscedastic Level 1
residual variance matrix
for T time points (unequal
variance at each time
point)

Osas



Example: Antisocial Behavior

* N=405 cases drawn from the National Longitudinal Survey of Youth (NLSY)

» Age 6 to 8 years at first assessment; reassessed a maximum of three more
times every other year

» Mother's report of child antisocial behavior on six items; each has a 0,12
response scale; sum score ranges from O to 12

* Two predictors: child gender and level of cognitive support of child in the
home at initial assessment

Research question:

- What are the characteristics of trajectories of antisocial behavior, and can
these trajectories be predicted by child-level measures?

§sas
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Homoscedastic Level 1 Variance

proc mixed data=mixed.antilong covtest ;
class 1d;

model anti = age/ solution ddfm=bw;
random intercept age / subject=id type=un g gcorr;
run;

Fit Statistics
-2 Res Log Likelihood 52905
AIC (smaller is better) | 92935
AICC (smaller is better) o2%0.6
BIC (smaller is better) | 53146

v

Heteroscedastic Level 1 Variances

proc mixed data=mixed.antilong covtest;
class 1d ageclas;
model anti = age / solution ddfm=bw;
random intercept age / subject=id type=un g gcorr;
repeated ageclas / type=un(l) subject=id;
run;

Fit Statistics
-2 Res Log Likelihood | 5264.0
AIC (smaller is better)  5303.0
AICC (smaller is better) | 5305.3
BIC (smaller is better) | 539b.1

Copyright © SAS Institute Inc. All rights reserve d.
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Example: Antisocial Behavior

Covariance Parameter Estimates I
Cov Parm  Subject Estimate Standard Error | Z Value PrZ 8 ) #_ﬁeﬁ’“#
UN(1,1) Id 1.0134 02312 4.38  =.0001 ) r_,-ﬂ*'“"‘
UN(2,1) id 0.07303 0.03331 1.91  0.0566 ) f_,-f""
UN(2,2) Id 0.022595 0.01003 227 00115 B - a#_f-f'f-f I
Residual 1.7518 01017 17.23 | =.0001 - ___#-—FF""_,':-F g

Solution for Fixed Effects &t =T ﬁ = _F - — = B

Effect Estimate | Standard Error | DF |t Value Pr = |t - _ |
Intercept 1. B255 0.0a575 404 19.00 | =000
age 007425 001774 95k 418 | <0001

Copyright © SAS Institute Inc. All rights reserved.




Conclusions: Antisocial Behavior

* The significant fixed effects reflect that the mean level of antisocial behavior
at age six (coded O in these models) is 1.63, and antisocial behavior is
increasing by 0.0/ units per year.

 The significant random eftects reflect individual variability among the
intercepts (1.01) and among the slopes (0.023). This is also seen in the plot of
predicted values tor each individual.

 Thereisa marginally significant (p=0.056) covariance between the intercepts
and slopes, and the correlation is 0.48. This indicates that, on average, children
reporting higher initial levels of antisocial behavior tend to increase more
steeply over time.

§sas
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Examples of Three-Level Data

- Three-level data might occur because individuals are nested within groups
and groups are in turn clustered within still higher-level units.

* residents within neighborhoods within counties
- patients within physicians within hospitals

- Three-level data often also occurs in studies of individual change over
time when individuals are nested within groups.

- performance over time nested within person nested within department

- symptoms over time nested within patient nested within physician

§sas
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Variance Partitioning

, T . __2(3) 2(2) 2
Variance Decomposition: V(Y ) =07y +0° +0

Suppose i is patient, j is physician, and k is hospital:

02/(028? +070 +02) IS the proportion of variance due to patients within physicians.
50 (02836) +0°% +02) IS the proportion of variance due to physicians within hospitals.

2(3 2(2 2\ - . . .
oo (0 0 T w0 +O ) s the proportion of variance due to hospitals.
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Specification in the MIXED Procedure

proc mixed data=mydata;
class L3 ID L2 ID;
model vy = x wl w2 / solution ddfm=kr2;
random intercept / subject=L2 ID(L3 ID);
random intercept / subject=L3 ID;

run;

— Notice the use of two RANDOM statements to define the random
intercepts at Level 2 and Level 3.

— Notice the use of the CLASS statement for the Level 2 and Level 3
D variables.

Osas
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Random Slopes for Three-Level Data

- In three-level models, you can have the tollowing predictors:

» predictors at Level 1 with random effects that vary over the second or
third levels (or both) of the model

- predictors at Level 2 with random effects that vary over the third level
of the model

- When the three levels consist of repeated measures within persons within
groups, random slopes tor time are common at both Levels 2 and 3.

» These reflect that rates of change over time might differ across groups
as well as across individuals within groups.

- Random slopes are most common with repeated measures.

§sas
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Random Slopes for Three Level Data

- Notice that in this model, there are random intercepts and slopes for X
(time) at both Levels 1 and 2.

Level 1) Y = bOjk +b1ijijk T &k Sijk ~ N(0,c°)
Level 2: bOjk — bOOk +b*0jk (b*ojkj _ N _(Oj [02(()%) ]_
0 =Bior D% 0 (0 oy Oy i

Level 3: By, = Bogo + D0 (b*Oij - N [O] (GZ(()%) j_
Dyok = Broo +0 ™10 D16 i 0 01(3) GZS)

Reduced Form:

Yik = (,Booo T /Blooxijk ) + (b*OOk +b*10k Xiik ) + (b*Ojk +b *1jk Xijk)+ Siik
GSsas
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Interpretations of Mul

« For a three-level, linear growth model, the equations for the three levels

can be conceptualized as tollows:

tilevel Equations

Level 11 Vi =Dy + B X

Level 2 bOjk =D, +b*0jk 2

} Individual trajectory +
%k I time- specific residuals

Group mean trajectory +
- individual variability around

bljk — blOk +b*1jk ,
Level 3: bOOk ,Booo T b*OOk )
blOk — :8100 T b*10k P

Copyright © SAS Institute Inc. All rights reserved.

group trajectory

i Mean trajectory over all groups +
variability across the group
trajectories
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Specification in the MIXED Procedure

proc mixed data=mydata;
class L3 ID L2 ID;
model y = x / solution ddfm=kr2;
random intercept x / subject=L2 ID (L3 ID)
type=un;
random intercept x / subject=L3 ID
type=un;
run;

— All fixed effects are entered in the MODEL statement.

- Two RANDOM statements are used to designate the random intercepts
and slopes at Levels 2 and 3.

§sas
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Continue Your Learning with a SAS Course
https://learn.sas.com/course/view.php?id=268 Free /-day trial!

Multilevel Modeling of Hierarchical and English v | sass v
Longitudinal Data Using SAS®

Preview mode

ENROLL

Overview Hands-On Lab Course Materials

THIS COURSE IS PART OF
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Continue Your Learning with SAS Programming
SAS OnDemand for Academics

= §sas s @D « Free SAS software for students,

SAS® OnDemand for Academics Overview  Featureslist  Leam&Support  [HACEESSINOWE e d U C at O r S, a n d I n d e p e n d e n‘t
learners.

- Register at:
www.sas.com/ondemand

SAS"ONDEMAND FOR-ACADEMICS

SAS°software in the cloud - for free! - L aunch at:
welcome.oda.sas.com
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Questions?

Thank you!

Jacqueline.Johnson(@sas.com
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