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Hierarchical Data Structures

– Hierarchical data structures are those in which multiple micro-level units 
are sampled for each macro-level unit.

– A common hierarchical data structure is when individuals (micro-units) 
are sampled from naturally occurring groups (macro-units).

Group J…

Case 1 Case 2 Case n1 Case 1 Case 2 Case n2
……

Population

Group 1 Group 2

Level 1

Level 2
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Dependence in Hierarchical Data

– Because many micro-level observations come from the same 
macro-level unit, this produces dependence in the data.

• Students attending the same school might have more similar academic outcomes 
than students attending different schools.

• Employees working with the same manager might have more similar problem-
solving strategies than employees working with different managers.

– Multilevel models provide a way to model this dependence, 
whereas more traditional models do not.
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Longitudinal Data Structures

– Longitudinal data structures arise when the same units are sampled 
repeatedly over time.

– Longitudinal data are useful for tracking change in an outcome over time 
(for example, response to a drug).

Subject J…

Time 1 Time 2 Time n1 Time 1 Time 2 Time n2
……

Population

Subject 1 Subject 2

Level 1

Level 2
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Dependence in Longitudinal Data

– Because repeated measures are collected on the same unit, this 
produces dependence in the data.

– Example: Employee job performance is tracked over a period of 
four years.

• Some employees perform at consistently higher levels compared to other 
employees.

• Some employees increase in performance at a steeper rate over time compared to 
other employees.

– Again, multilevel models provide a way to model this dependence, 
whereas more traditional models do not.
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The High School and Beyond (hsb) Data Set

– Data are from a 1982 survey of US public and catholic high schools.

– 7,185 students from 160 schools. 

– 90 public schools, 60 catholic schools.

– 14 to 67 students per school.

– Variables:

• Math achievement score for student

• Socio-economic status of student’s family, centered at zero
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The High School and Beyond (hsb) Data Set

• How much do US high schools vary in mean math achievement?

• Is math achievement related to student SES? 

• Is the strength of the relationship between SES and math scores similar across 
schools? Or is SES a more important predictor of some schools and not others?

• How do public and Catholic high schools compare in mean math achievement 
and in the strength of the SES-math achievement relationship?

Questions of Interest
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Multilevel Modeling

– Multilevel modeling does not incorporate schools as a fixed effects 
predictor, but rather treats schools as randomly sampled from a 
population.

– Effects are not estimated individually for each school but are 
assumed to have a particular distribution across the population of 
schools.

– Nested data structure

– Level 1 = students

– Level 2 = schools
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The MIXED Procedure

General form of the MIXED procedure:

PROC MIXED options;
        CLASS classification variables;
        MODEL outcome = fixed-effects / options;
        RANDOM random effects / options;
RUN;
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Fixed Effects Regression Model

Level 1 Equation: 

0 1Math SESij j j ij ijb b = + +             
2~ (0, )ij N   

Level 2 Equations:   
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Reduced-Form Equation: 

 00 10Math SESij ij ij  = + +  

 Fixed-Effects 
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Fixed Effects Regression Model

proc mixed data=mixed.hsb cl covtest;

  model student_mathach 

run;

= student_ses / solution;
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Fixed Effects Regression Model

12.75 = expected math achievement of a student from an average SES family
  3.18 = expected increase in math achievement per one-unit increase in SES

Assumes Independence of All Observations

41.16 = Level 1 variability of math achievement scores
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Random Intercepts Model

0

5

10

15

20

25

-1.2 -0.6 0 0.6 1.2

M
a

th
 A

c
h

ie
v

e
m

e
n

t

SES



Copyr ight © SAS Institute Inc. All  r ights reserved.

Random Intercepts Model
Level 1 Equation: 

0 1Math SESij j j ij ijb b = + +  
2~ (0, )ij N   

Level 2 Equations: 

 
0 00 0

1 10

*j j

j

b b

b





= +

=
  

2

0 00* ~ (0, )jb N   

Reduced-Form Equation: 

 
( )

( )

00 0 10

00 10 0

Math * SES

SES *

ij j ij ij

ij j ij

b

b

  

  

= + + +

= + + +
 

 

 

Fixed-

Effects 

Random-

Effect 



Copyr ight © SAS Institute Inc. All  r ights reserved.

Random Intercepts Model

proc mixed data=mixed.hsb cl covtest;

model student_mathach = student_ses / solution

  random intercept

run; 

ddfm=bw;

/ subject=school_id;
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Random Intercepts Model

4.77 = Variability of the school intercepts – significantly different from zero
37.03 = Level 1 variability of math achievement scores
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Random Slopes and Intercepts Model
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Random Slopes and Intercepts Model

Level 1 Equation: 
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Random Slopes and Intercepts Model

proc mixed data=mixed.hsb cl covtest;

  model student_mathach = student_ses / solution ddfm=bw;

  random intercept student_ses

run;

/ subject=school_id type=un g gcorr;

G matrix
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Random Slopes and Intercepts Model

4.82 = Variability of the school intercepts  significantly different from zero
  -0.15 = Covariance of intercepts and slopes   negative, not different from zero 
   0.41 = Variability of the school slopes    significantly different from zero
36.83 = Level 1 variability of math achievement scores
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Comparison of Models

Model Effects Variance Parameter Estimates
Fixed Effect Parameter 

Estimates
Model Fit

Intercept
Student 

SES Slope
Residual 
variance

Variance of 
Random 
Intercept

Variance of 
Random 

SES Slope

Covariance 
of Intercept 
and Slope

Intercept
Slope 

Student 
SES

AIC

Fixed Fixed 41.20 12.74 3.18 47,106

Random Fixed 37.03 4.77 12.66 2.39 46,649

Random Random 36.83 4.83 0.41 -0.15 12.67 2.39 46,648
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Estimated School Relationships

proc mixed data=mixed.hsb cl covtest;

  model student_mathach = student_ses / 

 solution 

 ddfm=bw 

outpred=predicted;

  random intercept student_ses / 

 subject=school_id 

 type=un;

run;

title 'School-specific Lines’;

proc sgplot data=predicted;

  series y=pred x=student_ses /

 group=school_id;

run; quit;
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A Comment on Notation
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Popular social science textbooks SAS and statistics texts



Copyr ight © SAS Institute Inc. All  r ights reserved.

Longitudinal Data: Time Nested within a Child

Level 1 Level 2

0 1ij j j ij ijy b b x = + + 0 00 0*j jb b= +

1 10 1*j jb b= +
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Combinations of Fixed and Random Effects

– random intercept
– fixed slope

– random intercept
– random slope

ijy
ijy

model y=time;
random intercept /subject=id;

model y=time;
random intercept time/subject=id type=un;
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Homoscedastic versus Heteroscedastic Level 1
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– Homoscedastic Level 1 
residual variance matrix 
for T time points (equal 
variance at all time points)

– Heteroscedastic Level 1 
residual variance matrix 
for T time points (unequal 
variance at each time 
point)
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Example: Antisocial Behavior

• N=405 cases drawn from the National Longitudinal Survey of Youth (NLSY)

• Age 6 to 8 years at first assessment; reassessed a maximum of three more 
times every other year

• Mother’s report of child antisocial behavior on six items; each has a 0,1,2 
response scale; sum score ranges from 0 to 12

• Two predictors: child gender and level of cognitive support of child in the 
home at initial assessment

Research question:

• What are the characteristics of trajectories of antisocial behavior, and can 
these trajectories be predicted by child-level measures?
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Homoscedastic Level 1 Variance

proc mixed data=mixed.antilong covtest ; 

 class id;

 model anti = age/ solution ddfm=bw;

 random intercept age / subject=id type=un g gcorr;

run;

Heteroscedastic Level 1 Variances

proc mixed data=mixed.antilong covtest; 

 class id ageclas; 

 model anti = age / solution ddfm=bw;

 random intercept age / subject=id type=un g gcorr;

 repeated ageclas / type=un(1) subject=id;

run;
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Example: Antisocial Behavior
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Conclusions: Antisocial Behavior

• The significant fixed effects reflect that the mean level of antisocial behavior 
at age six (coded 0 in these models) is 1.63, and antisocial behavior is 
increasing by 0.07 units per year.

• The significant random effects reflect individual variability among the 
intercepts (1.01) and among the slopes (0.023). This is also seen in the plot of 
predicted values for each individual.

• There is a marginally significant (p=0.056) covariance between the intercepts 
and slopes, and the correlation is 0.48. This indicates that, on average, children 
reporting higher initial levels of antisocial behavior tend to increase more 
steeply over time.
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Examples of Three-Level Data

– Three-level data might occur because individuals are nested within groups 
and groups are in turn clustered within still higher-level units.

• residents within neighborhoods within counties

• patients within physicians within hospitals

– Three-level data often also occurs in studies of individual change over 
time when individuals are nested within groups.

• performance over time nested within person nested within department

• symptoms over time nested within patient nested within physician



Copyr ight © SAS Institute Inc. All  r ights reserved.

Variance Partitioning

Variance Decomposition:

Suppose i is patient, j is physician, and k is hospital:

2(3) 2(2) 2

00 00( )ijkV y   = + +

( )2 2(3) 2(2) 2

00 00   + + is the proportion of variance due to patients within physicians.

( )2(2) 2(3) 2(2) 2

00 00 00   + + is the proportion of variance due to physicians within hospitals.

( )2(3) 2(3) 2(2) 2

00 00 00   + + is the proportion of variance due to hospitals.
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Specification in the MIXED Procedure

– Notice the use of two RANDOM statements to define the random 
intercepts at Level 2 and Level 3.

– Notice the use of the CLASS statement for the Level 2 and Level 3 
ID variables.

proc mixed data=mydata;
   class L3_ID L2_ID;
   model y = x w1 w2 / solution ddfm=kr2;
   random intercept / subject=L2_ID(L3_ID);
   random intercept / subject=L3_ID;
run; 
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Random Slopes for Three-Level Data

– In three-level models, you can have the following predictors:

• predictors at Level 1 with random effects that vary over the second or 
third levels (or both) of the model

• predictors at Level 2 with random effects that vary over the third level 
of the model

– When the three levels consist of repeated measures within persons within 
groups, random slopes for time are common at both Levels 2 and 3.

• These reflect that rates of change over time might differ across groups 
as well as across individuals within groups.

– Random slopes are most common with repeated measures.
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Random Slopes for Three Level Data

• Notice that in this model, there are random intercepts and slopes for x 
(time) at both Levels 1 and 2.
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Interpretations of Multilevel Equations

• For a three-level, linear growth model, the equations for the three levels 
can be conceptualized as follows: 
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Individual trajectory + 
time-specific residuals

Group mean trajectory + 
individual variability around 
group trajectory

Mean trajectory over all groups + 
variability across the group 
trajectories

Level 2:

Level 3:

Level 1:
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Specification in the MIXED Procedure

– All fixed effects are entered in the MODEL statement.

– Two RANDOM statements are used to designate the random intercepts 
and slopes at Levels 2 and 3.

proc mixed data=mydata;
   class L3_ID L2_ID;
   model y = x / solution ddfm=kr2;
   random intercept x / subject=L2_ID(L3_ID) 
                        type=un;
   random intercept x / subject=L3_ID  
                        type=un;
run; 
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Continue Your Learning with a SAS Course
https://learn.sas.com/course/view.php?id=268 Free 7-day trial!

https://learn.sas.com/course/view.php?id=268
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Continue Your Learning with SAS Programming
SAS OnDemand for Academics

• Free SAS software for students, 
educators, and independent 
learners.

• Register at: 
www.sas.com/ondemand

• Launch at:  
welcome.oda.sas.com

http://www.sas.com/ondemand
https://welcome.oda.sas.com/
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Questions?

Thank you!

Jacqueline.Johnson@sas.com
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