Best Tips, Tricks, and Code Snippets
from 30 Years Programming in SAS

Jeff LaMar

2025 lowa and Nebraska SAS User Groups
May 19, 20

Objective

* The objective is for everyone to walk away with at least one idea/tidbit/code
snippet that they can implement immediately in their current role

. Prehselzntation will go from basic / common sense to more advanced — so hold on
tight!

Topics To Cover

e Best Practices / Advice

e Stop the madness (c’'mon man!)

e Error checking / Debugging

e Key Knowledge & Tidbits (Macros & Call Symputx)

The MOST USEFUL and powerful technique (looping code)
Key Knowledge & Tidbits (Snippets, Ordered Lists, etc.)

Audience Questions

e How long have you been coding in SAS:
e <=3 years?
e 3to 10 years?
e 10 years plus?

Best Practices / Advice

Create one prOﬁram that has sample code snippets for later
reference — go here first before “Googling”

* (Example code notes: transpose, arrays, counters, univariate, etc.)
* You will create many programs during your “analytical lifetime”

Get to know the SAS Macro language and start at the basic level (it is
the most powerful piece of SASY)

Duplicates, duplicates, oh my! Know your joins and merges.
Understand your Unique's.

»0One to One
»One to Many
» Many to Many (Cartesian Join — Yuk!)

Always sanity check your data for counts, always!
Always check your code for duplicates, always!

You will “inherit” code throughout your career — take some time to
learn what it’s doing, even if complex

Stop the Madness!

If You’re doing these things, stop! C’'mon Man!

Do not create macros for the sake of creating macros! Don’t
create macros, within macros, within macros

e Why? It’s hard to debug and just creates confusion.

Create macro variables on things that can change (think of it as
a Parameter setting) - If it's static, you don't really need to
make it a macro variable

End all macros with %mend <macro name> Why? It helps with
reading the code, especially, with lots of embedded macros

Do not Replace datasets with the same name (including SQL)!
Why? You can’t debug. You may have destroyed your input
dataset and won’t be able to check any transformations.

Do not create complex SQL Queries with tons of inner joins and
subselect queries. Why? Again, you can’t debug very easily (do
you see a theme here?)

» Break up your code into manageable sections

» People who have to audit (or get the pleasure of inheriting) your code will be
very, very thankful

Stop the Madness!

If You’re doing these things, stop! C’'mon Man!

Do not create fancy header records. Why? It’s a waste of time to update and
“make pretty”. Use block comments that can easily be updated (for others
who might inherit your code)

Poor Header setup:

/**

PROGRAM: rock star.sas *
AUTHOR: Jeft LaMar *
CREATED: April 2025 *
DESCRIPTION _ *
Rock Star list *
CHANGE HISTORY *
Apr 2025 Original program created) *
May 2025 Reluctantly added Taylor Swift *

**/

Better way (take out the asterisks so you don’t have to mess with them if you
want to change something)

/*********** AT S S S SR S S b S S b S
PROGRAM: rock star.sas

AUTHOR: Jeff LaMar

CREATED: April 2025

DESCRIPTION _

Rock Star list

CHANGE HISTORY

Apr 2025 Original program created i

May 2025 Reluctantly added Taylor Swift

Error Checking / Debugging

Remember, the Semi-colon is your friend!

» If you get an error, it should be automatic that you check for a missing Semi-
colon

Solve errors top down. Many times errors propagate - fix the first one and re-run

Always check your log before going any further, always, especially with PC SAS (i.e.
Do NOT run code and then open the dataset without checking the log!)

Search for these key words when checking the log
» error
» warning (note: please try to modify code where you have warnings)

» uninit (short for uninitialized) - IMPORTANT: do not discount this advice! — SAS
will give an “Uninitialized NOTE” if, in new variable assignment statement, you
try to use a variable that doesn’t exist in the DATA set. Your new variable will
exist but be totally hosed up. SAS gives a NOTE for this and not an error!

KEY advice: Do NOT name any of your datasets or make comments containing

strings of “error”, “warning”, or “uninit” Why? You’ll pick up these strings when
you’re checking the log for the real thing.

e |like to use “issue” instead of “error”

Key Knowledge & Tidbits

SAS Macros 101 - Macro Variables

e SAS Macro Variables are just a string of characters (i.e. NOT a datatype of any sort)
e SAS will resolve the macro variable as a string of characters.

Example 1 (Macro assignment and usage)

* %let drummer = Ringo; *** This assigns macro variable;

e Usage: Where top_drummer = “&drummer”; (Important note, if you need to put tick
marks around a macro variable, you need to use double quotes). The ampersand tells
SAS to resolve the macro variable.

Example 2 (including the quotes in the macro assignment)

* %let drummer = ‘Ringo’; (Note: The quotes are just part of the text string and nothing
else)

e Usage: Where top_drummer = &drummer; (Note: | don’t need quotes at all, because SAS
will resolve the string which already includes quotes needed for a character variable)

Example 3
* %let Billboard_cutoff = 25;

e Usage: Where Billboard_occurrences > &Billboard _cutoff; (The ampersand tells SAS to
grab the macro variable and will insert 25 into the code)

Key Knowledge & Tidbits

* SAS Macros 101 — Macro code
General Macro code:
%macro rock_it_out;
/* Only use block comments i1n macros */
*** Sometimes line comments mess the macro up;
< code goes here >
%mend rock_it_out;

Command to execute the macro:
%rock_it_out;

IMPORTANT TIDBIT HERE! on Apostrophes and Contractions in comments
STAY AWAY from contractions(i.e. it’s) and single apostrophes in your comments!

In certain circumstances, it’s not an issue but sometimes it is, especially with macro programming. So it’s best
to get into the habit of avoiding them all together

*** Don’t have contractions In comments; “bad” comment
/* Don’t have contractions in comments */ “bad” comment

*** Do NOT have contractions In comments: “better comment”
/> Do NOT have contractions In comments */ “better comment”

Key Knowledge & Tidbits

Special macro call function: CALL SYMPUTX

Purpose — To assign a value to a macro variable during the execution of a data step.
This is an EXTREMELY useful and powerful SAS function. Get to know it well!

Note: Difference between symput and symputx is that symputx removes leading and trailing
blanks before assigning the value to the macro variable

Syntax: call symputx(‘macro-var’, character-value)
Example usage: Note: run date on 5/15/2025

data null_;

NaT? = 'Switcbfoot';_ t(today() 8.

call symputx mm® , pu oda ,yymmn8.));

call s¥mButx§'¥gggy',"9"|Eput(¥oda¥%),dateg.)||"'d");
call symputx(“band name® ,Name);

run;

%put mm = & mm;
%pUt TOU2Y = &TOURY:
%put band_name = &band_name;

Example log

%put yyyymm = &yyyymm;
yyyymn = 202505

sput today = &today;

today = *15MAY2025™d

Y%put band name = &band name;
band _name = Switchfoot

10

The MOST useful code (looping algorithm)

The following section contains code that | have used in EVERY job over the last 15
years. This code loops through an “incoming” dataset, performs key operations, and
stacks the final results. It is extremely versatile and can be applied in multiple
situations:

Here are examples of how I've previously used this technique:

e Check lengths of all character variables in a dataset

e Run proc univariate on all numeric variables in a dataset

e Check table counts on all tables in a Teradata schema

* Run a distribution analysis on character variables

* Run Statistical Process Control charts / or line charts on a list of numeric variables

Code Overview:

Start with a SAS Dataset or database table

Created an “incoming” dataset that contains the key field you want to loop through
Set obs nbr=_N_;

Set up a macro that loops through the key field (i = 1 to total_obs)

Delete temporary datasets created in the macro

Pull in the “incoming” dataset

Use Symputx to create macro variables based on a row in the incoming table
Perform operations on the “main” dataset (this varies depending on your objective)
Run proc append to stack results

Macro End

Initialize run by deleting the “appended” dataset (i.e. start fresh)
Run Looping Macro

11

The MOST useful code (looping algorithm
Basic Code Template

The best way to explain the code is to provide an example. Use this example as your
“looping template”. | basically copied my “looping” template and adjusted accordingly.

Obijective: Loop through sashelp.cars dataset and create a final dataset containing
distributions of values for all the character variables in the dataset.
SASHELP. CARS:

& Make & Model & Type & Orgin & DriveTrain MSRP Invoice () EngineSize &) Cylinders () Horsepower (B) MPG_City) MPG_Highway (& Weight (B Wheelbase & Length
Acura MDX SUV Asia Al 536,945 533,337 35 6 265 17 23 445 106 189
Acura RSX Type 5 2dr Sedan Asia Front $23,820 521,761 2 4 200 24 k3| x77e 10m 172
Acura TS 4dr Sedan Asia Front $26.590 524 647 24 4 200 22 23 3230 105 183
Acura TL &dr Sedan Asia Front §33.195 530,299 12 & 270 20 28 3575 108 136
Acura 15 RL 4dr Sedan Asia Front §43,755 535,014 5 6 225 18 24 3380 15 157
Acura 3.5 BL w./Mavigation 4dr Sedan Asia Frant §46,100 $41.100 35 & 225 18 24 3853 115 157
Acura MNSX coupe 2dr manual 5 Sports Asia Rear $89,765 §79.5978 32 & 250 17 24 3153 100 174
Audi AL 18T 4dr Sedan Europe Front £25,540 $23,508 18 4 170 22 | 3252 104 179
Audi A41.8T convertible 2dr Sedan FEurope Front $35,540 £32,506 18 4 170 23 0 3638 105 180
Audi A4 3.0 4dr Sedan Europe Front §31.840 $28 846 3 6 220 20 28 462 104 175
Audi A4 3.0 Quattro 4dr manual Sedan Europe Al 533,430 530,366 3 6 220 17 26 3583 104 179
Audi A4 3.0 Quattro 4dr auto Sedan Europe Al 534,430 531,388 3 6 220 18 25 3627 104 179
Audi AG 3.0 4dr Sedan Europe Front 336,640 533129 3 6 220 20 x 3561 109 192
Audi AE 3.0 Quattro 4dr Sedan Europe Al 539,640 535,992 3 6 220 18 25 3380 109 192
Audi A4 3.0 convertible 2dr Sedan Europe Front 342,450 $38.325 3 6 220 20 27 g4 105 180
Audi Ad 3.0 Quattro convertible 2dr Sedan Europe Al $44 240 $40.075 3 & 220 18 25 413 105 180
Audi AG 2.7 Turbo Quattro 4dr Sedan Europe Al 242,840 £38.840 27 6 250 18 25 3836 109 152
Audi AG 4.2 Quattro 4dr Sedan Europe Al £49,690 244 536 42] 300 17 24 4024 109 153
Audi AZ L Quattro 4dr Sedan Europe Al £69.190 564,740 42] 330 17 24 4359 121 204
Audi 54 Quattro &dr Sedan Europe Al 248,040 £43,556 42] 40 14 20 3825 104 179

12

The MOST useful code (looping algorithm) - Basic Code Template

TEEXEEIAIXITEIAIXTAAITAIAAXAATAXAITAXAATAIAAIAITXAITIAAATIAXAITAIAITAITIAAITAAITAIAIAXAITXAAITAATXAAITXAAATXAIAI AT XAXAI XXX XAXAXXXXx -

*** Standard loop code; '
*** Loop through the files and build the dataset;

AEAEXEEAIXITEIAEAXTAAITAIXAAAEAAAAAXAEAAXAAAATAIAEAAIAEIAXAATAAITXAIAXALAITAAITAIAIAAITXAIAITAATXAAITXAIAATXAXAITAATXAXAIAXAITXXAKXXXX*X -
’

*** Start with an "incoming” dataset;)
*** In this dataset, set obs_nbr = _N_ for looping;
*** Then get total observations;

B AR B S e e e e R e b b b b b e e S e S e e R e R S S S e e e e]

*** Get names of character variables from the “main dataset”;) ’
*** In this case, i1t i1s from sashelp.cars (but 1t could be anything)

AR B B e e e e e R e b b b b e e S e R R B b]
’

proc contents noprint data=sashelp.cars out=char_attrs(where=(type=2) keep=name
type libname memname memlabel); run;

*** Add obs nbr to incoming dataset (this will be used to drive the looping);
data incoming;

set char_attrs end = last;

where name NE “"Model®; *** Removing model from this analysis;

obs nbr = N ;
ifT last then call symputx(“total obs",obs nbr);
run;

*** Get total observations for 1nput into looping macro;
%put total obs = &total obs;

13

The MOST useful code (looping algorithm) - Basic Code Template Cont.

%macro car_dist(obs);

%do 1 = 1 %to &obs;

/* Use when testing - Need to comment when running else you will be in an infinite loop! */
/* %let 1 = 1; */

/* Read incoming dataset (row by row) and create macro variables for later use */
data null_;
set incoming;
where obs_nbr = &i.;
call symputx ("name®,strip(name));
call symputx ("libname®,strip(libname));
call symputx ("memname®,strip(memname));
run;

/* Output macro variables in log */
%put obs=&i, name=&name, libname=&libname, memname=&memname;

/* Code goes here: could be lots of things */
/* Important!: "Standardize the length of character variables before proc append */
proc sql;
create table char_dist as
select "&libname..&memname" as Dataset length=32, "&name.' as Var length=32
, &name. as Value length=32, count(l) as Counts
from sashelp.cars(keep=&name.)
group by 1,2,3
order by 1,2,3

quit;

/* In many cases, appending is done */

proc append base=char_distributions data=char_dist; run;
/* Delete datasets created in the loop */

proc datasets library=work nolist; delete char_dist; quit;

%end;
%mend car_dist; 14

The MOST useful code (looping algorithm) - Basic Code Template Cont.

Run the macro here:

*** Delete the appended dataset for a fresh run;
proc datasets library=work nolist; delete char_distributions; quit;

*** Run the looping macro;
%car dist(&total_obs);

Screenshots:
Incoming:

&5 LIBNAME &5 MEMNAME & MEMLABEL £ NAME (38 TYPE (& obs_nbr

SASHELP CARS 2004 Car Data DriveTrain 2 1

SASHELP CARS 2004 Car Data Make 2 2
SASHELP CARS 2004 Car Data Origin 2 3
SASHELP CARS 2004 Car Data Type 2 4

Macro Output (from 15t row of incoming):
obs=1, name=DriveTrain, libname=SASHELP, memname=CARS

Char_dist:

& Dataset & Var & Value @Cnunts
SASHELP CARS | DriveTrain Al 52
SASHELP.CARS DriveTrain Front 226
SASHELP.CARS DrveTrain Rear 110

15

The MOST useful code (looping algorithm) - Basic Code Template Cont.

Screenshots:

e I = B S B e

L4 = R

10
11
12
13
14
15
16
17
18
19
20

& Dataset
SASHELP CARS

SASHELP CARS
SASHELFP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELFP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELP CARS
SASHELFP CARS
SASHELP CARS

& Value

[oreten]

DriveTrain Front

DriveTrain Rear

Make
Make
Make
Make
Make
Make
Make
Make
Make
Make
Make
Make
Make
Make
Make
Make
Make

Acura
Audi
BMW
Buick
Cadillac
Chevrolet
Chrysler
Dodge
Fard
GMC
Honda
Hummer
Hyunda
Irfiriti
lsuzu
Jaguar

Jeep

Final Stack (Char_distributions):
& Var

'3:*} Counts

52

226
110

19
20

2

15

13

23

17

12

12

This is just one example:

In past projects, | have pulled character
distributions from a prior month and
compared to current month. Then checked
distribution percentages for significant
distribution shifts (The technique is called
Portfolio Stability Index).

You can also do something similar with the
numeric variables and compare min, max,
#missing, etc.

16

Key Knowledge — SAS Snippets
Used in both Enterprise Guide and SAS Studio

e | use snippets ALL the time! This is an extremely powerful tool

e What are SAS snippets?

e A SAS snippet is simply a reusable block of SAS code, typically containing
frequently used or complex code that you want to insert into your
program quickly and easily

e Snippets can be customized for later use which makes the programming
process more efficient

* You can insert the snippet by typing the abbreviation and hit enter

e Snippets allow you to insert “shell” code into your program which
reduces repetitive typing (and errors)

* My all-time favorite snippet | use is called “pfreq”. When | enter pfreq, it
gives me this (why type it out? | just need to fill in data and tables):

proc freq data = xxx; tables yyyy 7/ missing list; run;

17

Presenter
Presentation Notes
Nine SNIPPET slides

Key Knowledge — SAS Snippets
How to set up in Enterprise Guide

e Type up the code you want as a snippet, highlight and “copy” (i.e. Ctrl-C)

Example:
proc freq data = xxx; tables yyyy / missing list; run;

e Click on Program/New snippet... (in PC SAS, it’s Tools/Add Abbreviation)

| & Process Flow - ISUG_2025 - SAS Enterprise Guide New Snippet
File Edt View Program Tools Help (¥ = Abbreviation:
I
MNew program Ctri+N Text to insert:
@ Proiect 1
Open program
> + + Newsnippet —_—
@ i | Editor macros »
v (3 ISUG_20;
v 79 Proce Manage macros and snippets
P W r"ﬁ Ba Enhanced editor keys SAS code editing mode
21 Editer optiens et Cancel
R split code editor » M

TP o ol . o sl LYl el

18

Key Knowledge — SAS Snippets
How to set up in Enterprise Guide

e Type an abbreviation name for your code snippet (I’'m using pfreq)
e Paste the code you had copied previously in the “Text to insert” box (i.e. Ctrl-V)

MNew Snippet

Abbreviation:

pfreq
Text to insert:
liFproc freq data=wxxx tables yyy / missing list;

runm g

5AS code editing mode
OK Cancel

e Click on OK
* To use in the SAS editor, type pfreqg and hit enter — the following code will be pasted in

your editor:
proc freq data = xxx; tables yyyy 7/ missing list; run;

 And WaPow!, No more typing it out!
19

Key Knowledge — SAS Snippets

DO THIS so you won’t get burned!

e IMPORTANT NOTE: If your EG SAS gets upgraded or re-installed (i.e. You are getting a
new laptop/desktop), you will lose ALL your snippet that you have set up.

» To fix this potential problem, EACH time you create a snippet macro, export the macro
to a designated macro folder for safekeeping (looks like pfreq.kmf). See below for how:

e Click on Program/Manage macros and snippets (in PC SAS — Tools/Keyboard
Macros/Macros)

Process Flow - ISUG_2025 - SAS Enterprise Guide P V——
i i .
File Edt View Program Tools Help Name Keys Description
MNew program Ctel+ M fastload Close
E;“'-' Project
4 Open program grant
Assign Keys...
Mer
| 2 + = New smippet ?
pfreq
Create...
. Editor macros ¥
A ..:"" ISUG_20; psql :
- . d ab Edit...
v 72 Proce anage macros and snippets ptrans
P . trans? Delete
W ﬂ Ba Enhanced editor keys prrans
Al Editor options et
— Impaort... Export...
P Split code editor y W
| LI PR R PRIy TSSR [St S Y e —"

e Highlight the snippet name and click on “Export” to save to a location of your choice

* Note: As you can see, you can also “Import” a snippet (which will obviously come in

handy if you need to get your snippets back!)

20

Key Knowledge — SAS Snippets
Most Used

Snippet Examples (How to use: type in the snippet and hit “enter”)
Be creative! | usually add a “p” in front when defining the abbreviation
For the most part, don’t use real words (snippets will pop up unnecessarily)
Set up Snippets for:
1. Code you are using over and over!

2. Code where you don’t have the syntax memorized
3. Shell code

cmt (set the length you use for comments)

AR AT AT e S e S b e S b e S e S S e S S S S S S e S e S S S e S e S e e S e e S]
’

pfreq
proc freqg data = xxx; tables yyyy / missing list; run;

psql

proc sql;

create table xxxx as
select

from

join

on

where

group by

order by

auit;

21

Key Knowledge — SAS Snippets
Most Used cont.

Duplicate Check

Purpose: To check for “duplicate” records. This code will identify the duplicates and then merge back to
the original dataset so you can see what’s going on and code accordingly if necessary. (I use this all the
time and | mean ALL the time)

dupe

%let dupe Ffile = best rock bands;
%let dupe_key = band_name,best_song; /* add comma between names */

?:e% Eroup_bg :dl 2; /* Update "group by"™ 1f more than one dupe_key */
ole = band_name;

%let key2 = best song;

%let key3 = XXXX;

proc sqgl;

create table dupes as

select &dupe key., count(*) as counts
from &dupe frle.

ﬂroup by &group by

avinhg counts >

quit;

proc sqgl;

create table dupllf¥ as
select b.counts, a.

from &dupe file. a
jJoin dupes b

on a.&keyl. b.&keyl. /* Update "on' 1f more than one dupe key */

and a &kexz = b. &ke 73
/*and a.& gS = & ey3.*/
order by a.&dupe_key.

quit; 22

Key Knowledge — SAS Snippets
Most Used cont.

Datasets Match Check

Purpose: To investigate and compare how two datasets match on the “by” variables.
Also check for records which show up in one dataset and not the other. (Note: Again, |
have this set this up as a macro snippet)

Note: For this code, check the log and it will indicate the observations in each dataset
for a quick assessment of what has matched and not matched.

merg
*** Prep datasets for merge;

proc sort data=tablel; by varl; run;
proc sort data=table2; by var2; run;

data matched tablel only table2 only;

merge tablel(in=a) table2(in=b);

by varl;

if a and b then output matched;

else 1T a and not(b) then output tablel only;
else 1T not(a) and b then output table2 only;
run;

23

Key Knowledge — SAS Snippets
Most Used cont.

Random Selection
Purpose: To Randomly select a subset of records from a dataset

“strata” is optional (for stratified sampling).
“seed” is also optional.

Note: selectall is extremely important. If you don’t use selectall and the data is
smaller than the sample size selected, you will get an error.

psurv
*** SRS - Simple Random Sampling;
proc sort data = all _bands; by band type;

proc surveyselect noprint data=all_bands
out=all _bands_random

method = srs

seed = 8675309

sampsize=10 selectall;

strata band_type;

run;

24

Key Knowledge — SAS Snippets
Most Used cont. (especially useful in PC SAS)

The “Black Hole”

Sometimes you inadvertently have a missing quote or parenthesis, and you run some
code, then SAS gets totally messed up and goes into what | call the “Black Hole”.

How do you know you are in the Black Hole? When you submit SAS code and nothing
happens! (e.g. no output on a proc freq). If you check the log, you get no errors but no
observations and/or output. What? YOU ARE IN THE BLACK HoLE!

Run this “Black Hole” code to recover your session:

You will see a bunch of errors in your log, that’s okay. Your session should be recovered from the
black hole that sucks the life out of your code! | have a snippet for this:

black

xELOoF F); */; Ymend; run;
*ELOFT F); */; Ymend; run;
*ELOoFT F); */; YUmend; run;
*ELOoFT R */; YUmend; run;
*ELoFT R */; YUmend; run;
*ELOoFT R */; YUmend; run;
*ELOFY R */; YUmend; run;
*ELOoFT R */; Ymend; run;
FELOoF F); */; YUmend; run;
e L

*); */; %Ymend; run;
25

Key Knowledge — Enterprise Guide

Ordered List

* |t allows you to create a customized list of programs and tasks to run sequentially
e THIS is the BEST thing in EG — learn it!

* Game changer —it is why | code exclusively in EG

Your EG project could have multiple programs / tasks, but you only want to run a selected group:

Let’s say you want to run the following in order:\
* |mport Data

* Songs_70s

* Songs_80s

e Pathetic_90s

e Completion_email

w () 15UG_2025
w T8 Process Flow
~ #1] Bands_and_Songs.xlsx
ﬂ Import Data (Bands_and_Songs.xlsx[Sheet1])
;'!—J Import Data (Bands_and_Songs.xlsx[genre])
3 Copy Bands Spreadsheet to Metwork

Here’s how to do it with an ordered list: 2] Note
Choose Fi|e/NeW/Ordered List: #1] Bands_and_Songs.xlsx
v Programs
File Edit \View Program Tools Help L'. - £ @ Research
[* Mew > @ Program Ctd+MN . @ Find_5noopdeog
' 3 [#] Songs_70s
Open L D Data S gs-!

w4 Songs_80s

4 o

{3 Open tasks > (% Project L# Pathetic_90s

#2) Open recent items > | T8 Process ﬂﬂw/ w# Concert_Dates

Save "ISUG_2025" project Ctrl+S = Ordered list iF 1SUG_2025

[T Sawve “ISUG_2025" project as W% NSUG_2025

@ Save "Concert_Dates" as E Mote @ One_hit_wonders
: & Completion_email

(=) Save all Ctrl+Shift+5 [E] Report | 26
L e em e

Presenter
Presentation Notes
Ordered list has 5 slides

Key Knowledge — Enterprise Guide

Ordered List

On the Ordered List box, click on “Add” to choose your Content

Orodered List E W

Ordered List Content

Mame Server Source Location Date Modified Add

Remove

Down

Run Save Cancel Help

Key Knowledge — Enterprise Guide

Ordered List

Select the first program/task you want to run
Click on “Open”

Look in: |@; Project w - £ | m & | - 5
(E. Project MName Label Type Source Location Last Modifies
& Black Hole Black Hole Process .. 5/11/2025¢€
@ Code_Snippets Code_Snippets Process .. 5/11/2025¢
@ Completion_email Completion_email Process ... 5/11/2025¢
@ Concert_Dates Concert_Dates Process ... 5/14/2025 7
+ Copy Bands Spreadsheet to Metwol opy Bands op... rocess ... :
52 Copy Bands Spreadsh M rk Copy Bands S P 8320191
@ Find_5Snoopdog Find_5Snoopdog Process ... 5/11/2025 ¢
}"—-' Impart Diata (Bands_and_Songs xlsx[genre]) Import Data (B... Bands_a... Process ... 5/2/20195:
)l'—-| Impart Data (Bands_and_Songs xlsx[Sheet1]) Impart Data (B... Bands_a... Process ... 5/2/20195:
.@ ISUG_2025 I1SUG_2025 Process ... 5/10/2025¢
@ NSUG_2025 MSUG_2025 Process ... 5/11/2025¢
.@ One_hit_wonders One_hit_wond... Process ... 5/11/2025¢
.@ Pathetic_50s Pathetic_30s Process ... 5/11/2025 ¢
@ Program Program Process ... 5/12/2025°
%] Ressarch Research Process ... 5/11/2025¢
@ Songs_70s Songs_70s Process ... 5/11/2025¢
@ Songs_80s Songs_80s Process ... 5/11/2025¢
£ >
MName ata (Bands Songs xlsx[genre]) e
Files of type: All File Types ~
Cacs

28

Key Knowledge — Enterprise Guide

Ordered List

Continue the same process and select the program/tasks you want to run

Note that you can move them up or down, or even remove them from the list

Ordered List

Ordered List Content

Click on Save when you are finished

MName Server Source Location Date Modffied
@Impurt Data (Bands_and_Songs xdsx[Shest1]) SASApp Bands_... Process... 471672015 10:29:17 PM
@50”95_?1]5 SASApp Process... 4716720159 5.28:06 PM
@Songs_ﬂﬂs SASApp Process... 4716/2019 9:28:26 PM
@ Pathetic_90s SASApp Process... 471672019 9:29:06 PM
@Cumpleﬂun_’amail SASApp Process... 471672019 10:07:238 PM

Fun Save Cancel

Add
Remove
Up

Down

Help

29

Key Knowledge — Enterprise Guide

Ordered List

Right click on “OrderlList” and rename if you want
You can always right click and open to edit

To run, right click and choose “Run Songs”
And WaPow!, it will run the codes/tasks
in your list

You can create more than one Ordered List

Say you have a bunch of “Import Data” tasks

You can create an ordered list to just import data
The possibilities are endless!

Again, this was a “Game Changer” for me!

Project

/'ﬂ Import Data (Bands_and_Songs.xlsx[Sheetl])
/'ﬂ Import Data (Bands_and_Songs.xlsx[genre])

B3 Copy Bands Spreadsheet to Metwork

[2] MNote

#1] Bands_and_Songs.xlsx

W Programs
@ Research
& Find_Snoopdog
@ Songs_T0s
& Songs_80s
*] Pathetic_90s
@ Concert_Dates
& 1SUG_2025
& NSUG_2025
@ One_hit_wonders
& Completion_email
@ Black Hole
«F) Code Snippets
* Program
W Ordered Lists

\ :IE SDngs

30

Key Knowledge — Enterprise Guide
How much time will your process flow take to run?

It's difficult to predict how long a SAS process will take to run, as it depends more
upon the data than on the actual program instructions. In SAS Enterprise Guide, you
can find this information at the task level by the following:

1. Right-clicking on the task (or program node)
2. Selecting Properties

3. On the General tab, you'll see the "Last execution time".

Label:

Optimize Data (LOMNG!)

Code will run on server:

SASApD v

Last Execution Time: how long it took last
B *—""" time the task was run

File path:

31

Key Knowledge & Tidbits

e SAS Dates, Datetime, Time
» A SAS date is a number! It is the number of days from Jan 1,
1960 to a specified date. Some of us have negative birthday
dates! Sad ®

» A Datetime is also a number! It is the number of seconds
between Jan 1, 1960 and a specified date and time (down to
the year/month/day/hour/minute/second)

»And Time is a number. Itis the number of seconds since
midnight of the current day.

» For each type of variable above, you will need to assign a
format. | mainly use dates so my favorite format is mmddyy10.
(i.e. 05/13/2019). Perform a Google search on “SAS date
formats”. Here’s a useful link

https://documentation.sas.com/?docsetld=Ircon&docsetTarget=p1lwjOwt2ebe2a0nllv4lem9hdcOv.htm&docsetVersion=9.4&locale=
en

32

https://documentation.sas.com/?docsetId=lrcon&docsetTarget=p1wj0wt2ebe2a0n1lv4lem9hdc0v.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=lrcon&docsetTarget=p1wj0wt2ebe2a0n1lv4lem9hdc0v.htm&docsetVersion=9.4&locale=en

Key Knowledge & Tidbits
Dates cont.

e Use ‘ddmmmyyyy’d to specify a date in SAS code (i.e/01JAN2019°D)
»Example: Where rock_induction_date >= ‘01Jan2018'd;

»Or if using macro variables, | highly recommend that you
include everything in the macro string (remember macro
variables are just strings of characters).

»%let compare dt =‘01Jan2018d;

»So the code would look like this: Where rock_induction_date >=
&compare_dt;

33

Key Knowledge & Tidbits

Date variable and Date text strings — NOT the same thing
Example:

data concert_dates;

set bands;

format concert_dt_date mmddyylO. ;

1T Band=“Puddle Of Mudd® then do;
concert_dt_date "01jun2025-d;
concert_dt _char "06/01/2025";

end;
run;

OUTPUT:

BANDS &y Band m concert_dt_date &% concert_dt_char
27 CONCERT_DATES | Pyddie Of Mudd 06/01/2025 06/01/2025

Key tidbit: It is important to understand that the two concert date variables have to be
handled accordingly in any future SAS processing. One is a Date data type and the
other is a Character data type — even though they look the same in the output.

34

Key Knowledge & Tidbits

Length of variables — Important when using the data step (Not an issue when using
proc SQL). Key tidbit: In Data Step programming: When you set up a character variable
assignment, SAS will set the length of the variable on the first assignment.

If you do this:

data genre;

set bands2;

1T Band = "lron Maiden® then Genre = "Rock”;

else 1f Band = "Carrie Underwood® then Genre = "Country”;
else 1f Band "BB King" then Genre = "Blues”;

run;

Your output will look like this:

& Band & Genre
1 | BB King Blue

2 Iron Maiden Rock

3 Camie Underwood Coun

35

Key Knowledge & Tidbits

Length of variables — Use the length statement to avoid “character cut-off” (Note: the
value of length needs to be greater or equal to the longest assignment length)

To fix the previous issue, do this:

data genre;

set bands2;

length Genre $8.;

1T Band = "lron Maiden® then Genre = "Rock"®;

else 1T Band = "Carrie Underwood®” then Genre = "Country”;
else 1f Band "BB King" then Genre = "Blues”;

run,

Your output will look like this:

& Band & Genre
1 | BB King Blues

Iron Maiden Rock

P

el

Camie Underwood Country

36

Programming Tips
Assignment Logic audit checking

When you make assignment “logic statements” in your code, especially with complex
logic assignments, ALWAYS, and | say ALWAYS run a “Proc Freq” to check your results

Back to Genre ... it’s a good practice to add “Unknown” at the end of a logic assignment and do a
proc freq to check if you captured everything.

data genre2;

set bands3;

length Genre $8.;

iIf Band = "lron Maiden® then Genre = "Rock";

else 1T Band = "Carrie Underwood® then Genre = "Country”;
else 1T Band = "BB King®" then Genre = "Blues”;

else Genre = "Unknown®;

run;

/* Check Assignments */
proc freqg data = genre2; tables Genre*Band / missing list; run;

Qutput (oops! You have something that didn’t get assigned! - It’s ‘Christian’ by the way):
Cumulative Cumulative

Genre Band Frequency Percent Frequency Percent
Blues BB King 1 25.00 1 25.00
Country Carrie Underwood 1 2500 2 50.00
Rock Iron Maiden 1 23.00 3 75.00
Unknown Chris Tomlin 1 2500 4 100.00

37

Programming Tips

Functions | love:
Intnx — to return the date after a specific number of intervals have passed. 1 like to
think of it as “date math”

Examplel: take today’s date and set the date as the first day of the current month
Example2: take today’s date and set the date as the first day of the next month
Example3: take today’s date and go back to the same day a year ago

Note: | ran this code on 5/15/2025.

data 1ntnx;

format today begin next year ago mmddyylO.;
today = today(Q);

begin intnx("month* ,today,0);

next = intnx("month®,today,1);

year_ago = intnx("day",today,-365);

run;

Output:

< % Where = T Query Builder {3 Tasks~

o7
B I"THK m tl:llja}' m hegin m ret m}'E-'EIF_EI';ID

1 051572025 05/01/2025 06/01/2025 05152024

38

Programming Tips

Putting it all together with CALL SYMPUTX and INTNX
Say your dashboard month is April, 2019

%let dashmonth = 201904; /* Note: this i1s the only iInput parameter you need */

data Test;

format month_begin today prior_month mmddyylO. ;

month = substr('&dashmonth”,5,2);

year = substr("&dashmonth™,1,4);

month_begin = mdy(month,1,year);

today = today();

prior_month = INTNX("MONTH",Today(),-1);

call symputx("month_begin_SQL","""||strip(year)]| "-"|Istrip(month)]| -01"]]""");

call symputx("month_begin_SAS*®,"""||put(month_begin,date9.)] |"""]]|"D");

call symputx("month_next_ SQL"," "] put(intnx("month" ,month_begin,1),yymmdd10.)]]""");
call symputx("month_next_sas®,”""||put(intnx("month" ,month_begin,1),date9)| ""|1D");
call symputx”today”,put(today,yeard.)| |put(month(today),z2.)||put(day(today),z2.));
call symputx(“'prior_month",put(prior_month,YYMMN.));

run;

%put dashmonth = &dashmonth;

%put prior_month = &prior_month;

%put month_begin_SQL = &month_begin_SQL;
%put month_begin_SAS = &month_begin_SAS;
%put month_next SQL &month_end_SQL;
%put month_next SAS = &month_end_SAS;
%put today = &today;

39

Programming Tips

Putting it all together with CALL SYMPUTX and INTNX
Log output

%put dashmonth = &dashmonth;
dashmonth = 201904

%put prior_month = &prior_month;
prior_month = 201903

%put month _begin SQL = &month_begin_ SQL;
month_begin SQL = "2019-04-01"

%put month_begin_ SAS = &month_begin_ SAS;
month_begin SAS = "01APR2019°D

%put month _next SQL = &month_end SQL;
month _next SQL = "2019-05-01°

%put month_next SAS = &month_end SAS;
month_next SAS = "01MAY2019"D

%put today = &today;
today = 20190430

Be creative and you can become a SAS
Rock Star, oh yeah!

41

Questions?

Contact Info:
Jeff LaMar
Jeffrey.c.lamar@wellsfargo.com

42

Appendix

Code Snippets

Counter Code
Purpose: To create counter variable numbers for by groups within a dataset

Note: This can be very useful for many different purposes. Keep this code handy in
your “code snippet” file.

Examplel: Incoming Dataset

GEMRE_BAMD -

Objective
‘EﬁFE””d ort %EE’YE“”"” ¥ Wh Create some “counter” variables for
Genre Eand . .
1 [Bum] Abertkin further logic processing
2 Blues E.E. King
3 Country Alabama
4 Country Lady Antebellum
5 Country Zac Brown Band
& Heavy Elack Sabbath
7 Heawy Metalica
& Pop Katy Perry
9 Pop Madonna
10 Pop Taylor Swift
11 Rock Aerosmith
12 Rock Led Zeppelin
13 Rock Lymyrd Skymyrd
14 Rock Raolling Stones

44

Code Snippets

Counter Code

*** Counter with ONE by group;

*** Increment the counter for each band In the Genre;
*** Reset the counter to 1 at a new Genre;

data genre_band2;

set genre_band;

first_genre = first.genre; /*optional:so you can see the fTirst.genre variable*/
band counter + 1; /* Note: This iIs a “sum statement” */
by Genre;

iIT first.Genre then band counter = 1;

Run;

GEMRE_BAMNDZ -

<1 Filter and Sort Elq Query Builder S Where | Data = Describe - Gmp‘/ Output
My Gemre s Band {i@d first_genre (z) band_counter Note that the band counter

; [Bues Jaetking 1 ! increments with each change in Genre
Elues E.B. King 0 2

3 Country Alabama 1 1 (and resets baCk to 1)

4 Country Lady Antebellu.. 0 2

5 Country Zac Brown Band 0 3

& Heawy Black Sabbath 1 1

7 Heawy Metalica] 2

& Pop Katy Perry 1 1

9 Pop Madonna] 2

10 Pop Taylor Swift] 3

11 Rock Aerosmith 1 1

12 Rock Led Zeppelin] 2

13 Rock Lymyrd Skymyrd] 3

14 Rock Ralling Stones] 4

45

Code Snippets

Counter Code

*** Counter with ONE by group;

*** Increment the counter for each change of Genre;

data genre_band3;

set genre_band;

first_genre = first.genre; /* optional */

by Genre;

iIT first.Genre then genre_counter + 1; /* This is a “Sum Statement */
run;

GEMRE_BAMDS -

%’iFilterand Sort %Duer}r Builder SFF Where | Data -~ Describe ~ Graph -
{r}_ Genre {r}, Eand @} first_genre @ genre_counter

1 Albert King 1 1

2 PBlues B.B. King 0 1 Output

3 Country Alzbama 1 2 Note that the genre_counter

4 Country Lady Antebellu.. 0 2 . . L .
5 Country > e Brown Band 5 5 increments with each change in
§ Heavy Black Sabbath 1 3 Genre.

7 Heavy Metalica] 3

g Pop Katy Perry 1 4

9 Pop Madonna] 4

10 Pop Taylor Swift] 4

11 Rock Aerosmith 1 B

12 Rock Led Zeppelin 0 5

13 Rock Lymyrd Skymyrd 0 5

14 Rock Raolling Stones] 5

46

Code Snippets

Counter Code
*** Putting both together;
data genre_band4;
set genre_band;

first_genre = first.genre; /* optional: just so you can see the first.genre
variable */
retain genre_counter O;
band _counter + 1;

by Genre;

1T first.Genre then do;

end;

run;

,{3} Genre {r‘_t;. Band
[Blues | Albert King
Blues B.B. King
Country Alabama
Country Lady Antebellum
Country Zac Brown Band
Heawy Black Sabbath
Heawy Metalica
Pop Katy Perry
Pop Madonna
Pop Taylor Swift
Rock Aerosmith
Rock Led Zeppelin
Rock Lymyrd Skynyrd
Rock Rolling Stones

band _counter = 1;
genre_counter + 1;

@} first_genre @} genre_counter @} band_counter

(=R =R == BRI == R = e =R =R =]

1

L L T T T O S SR R AU N R A

B P = L0 R R L3 R — R —

Output
Both counters in one dataset

47

Code Snippets

Email Template
Purpose: To send an email after the completion of a code run. Include final condition
code for a quick assessment of the run.

Part 1: Beginning and middle of code

R AR AR R R B B B B B e S e e S e e e e e e S R

*** Enterprise Guide email template;
AAEXEAIKXEAXTEIAAAIKXAAAXAAXAAAITAAITXAAAIITAAXAAAXAAAITXAAIAAAAITAAXAAAITXAAXATXAIAAXXAAXXXAX -
*** Send email after job completion which includes condition codes;
*** At the top of the code, reset the condition codes;

*** Reset condition codes for email output;
%let syscc = 0; /* SASGRID1 */

*** Get the time the SAS program started;
%let timenow=%sysfunc(datetime(),datetime.);

*** Your SAS code goes here;

*** Example below;

data genre_band2;

set genre_band;

first_genre = first.genre;

band _counter + 1;

by Genre;

iIT first.Genre then band counter = 1
Run;

48

Code Snippets

Email Template
Purpose: To send an email after the completion of a code run. Include final condition
code for a quick assessment of the run.

Part 2: Put at end of program

*** Send email after grogram iIs finished;
*** Get the time the SAS program completed;
%let timeend=Y%sysfunc(datetime(),datetime.);
%put timeend = &timeend;

*** Calculate minutes;

data null_;))
seconds=i1ntck("seconds”,"&timenow."dt,"&timeend."dt);
minutes = seconds/60.0;)

call symput("minutes”,strip(put(minutes,8.1)));

run;

filename OUTBOX email

TO=("&useremail’’

FROM=(""&useremail™™) i o
SUBJECT=""Enterprise Guide Program Completed. Condition Code = &syscc';

data null_;
fiTe outbox; i
put "Enterprise Guide Program Completed";

ut /7 "SASGRID SYSCC Error Code i1s: &syscc';

put / "SAS program started at: &timenow';

put / "SAS program ended at : &timeend";

put / "SAS total run_time: &minutes '';)
put / "**This email i1s generated from an automated SAS job

process**";
run;

49

Code Snippets

Email Template that checks condition code and sends accordingly
Purpose: To check the condition code and send an email to the appropriate audience
based on the status of the job run.
A note on &syscc (A system Automatic Macro Variable):
e If &syscc=0 then no errors and no warnings
e |f &syscc=4 then no errors but at least one warning
e If &syscc=1012 or 3000 then ERRORS in code (anything above a 4 is an error!)

%macro send_email;
%if &syscc. <= 4 %then %do;

filename OUTBOX email

TO=(“buspartnerl.yourcompany.com” “busparter2.yourcompany.com?”)
FROM=(""&useremail'")

SUBJECT="Enterprise Guide Program Completed";

data null_;

file outbox;

put "Enterprise Guide Program Completed";

put / "**This email 1s generated from an automated SAS job
process>*" ;
run;

%end;

50

Code Snippets

Email Template that checks condition code and sends accordingly
Purpose: To check the condition code and send an email to the appropriate audience based on the
status of the job run.

%else %do;

filename OUTBOX email

TO=("&useremail'")

FROM=("&useremail'")

SUBJECT="Enterprise Guide Program Completed with ERRORS.
Condition Code = &syscc'';

data null _;

file outbox;

put "Enterprise Guide Program Completed with ERRORS'";

put / "SASGRID SYSCC Error Code i1s: &syscc'';

put / "SAS program started at: &timenow';

put / "SAS program ended at : &timeend';

put / "SAS total run time: &minutes '';

put / "**This email i1s generated from an automated SAS job
process>*" ;
run;

%end;
%mend send_email;

%send_email;

51

	Best Tips, Tricks, and Code Snippets from 30 Years Programming in SAS�����Jeff LaMar�2025 Iowa and Nebraska SAS User Groups�May 19, 20�
	Objective
	Audience Questions
	Best Practices / Advice
	Stop the Madness!�If You’re doing these things, stop! C’mon Man!�
	Stop the Madness!�If You’re doing these things, stop! C’mon Man!�
	Error Checking / Debugging
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits
	The MOST useful code (looping algorithm)
	The MOST useful code (looping algorithm)�Basic Code Template
	The MOST useful code (looping algorithm) - Basic Code Template
	The MOST useful code (looping algorithm) - Basic Code Template Cont.
	The MOST useful code (looping algorithm) - Basic Code Template Cont.
	The MOST useful code (looping algorithm) - Basic Code Template Cont.
	Key Knowledge – SAS Snippets�Used in both Enterprise Guide and SAS Studio
	Key Knowledge – SAS Snippets�How to set up in Enterprise Guide
	Key Knowledge – SAS Snippets�How to set up in Enterprise Guide
	Key Knowledge – SAS Snippets�DO THIS so you won’t get burned!
	Key Knowledge – SAS Snippets�Most Used
	Key Knowledge – SAS Snippets�Most Used cont.
	Key Knowledge – SAS Snippets�Most Used cont.
	Key Knowledge – SAS Snippets�Most Used cont.
	Key Knowledge – SAS Snippets�Most Used cont. (especially useful in PC SAS)
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide�How much time will your process flow take to run?
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits�Dates cont.
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits
	Programming Tips
	Programming Tips
	Programming Tips
	Programming Tips
	Be creative and you can become a SAS Rock Star, oh yeah!
	�������Questions?������Contact Info:�Jeff LaMar�Jeffrey.c.lamar@wellsfargo.com��
	Appendix
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

