
Best Tips, Tricks, and Code Snippets
from 30 Years Programming in SAS

Jeff LaMar
2025 Iowa and Nebraska SAS User Groups

May 19, 20

Objective
• The objective is for everyone to walk away with at least one idea/tidbit/code

snippet that they can implement immediately in their current role
• Presentation will go from basic / common sense to more advanced – so hold on

tight!

Topics To Cover
• Best Practices / Advice
• Stop the madness (c’mon man!)
• Error checking / Debugging
• Key Knowledge & Tidbits (Macros & Call Symputx)
• The MOST USEFUL and powerful technique (looping code)
• Key Knowledge & Tidbits (Snippets, Ordered Lists, etc.)

2

Audience Questions

• How long have you been coding in SAS:
• <= 3 years?
• 3 to 10 years?
• 10 years plus?

3

Best Practices / Advice
• Create one program that has sample code snippets for later

reference – go here first before “Googling”
• (Example code notes: transpose, arrays, counters, univariate, etc.)
• You will create many programs during your “analytical lifetime”

• Get to know the SAS Macro language and start at the basic level (it is
the most powerful piece of SAS!)

• Duplicates, duplicates, oh my! Know your joins and merges.
Understand your Unique's.
One to One
One to Many
Many to Many (Cartesian Join – Yuk!)

• Always sanity check your data for counts, always!
• Always check your code for duplicates, always!
• You will “inherit” code throughout your career – take some time to

learn what it’s doing, even if complex

4

Stop the Madness!
If You’re doing these things, stop! C’mon Man!

• Do not create macros for the sake of creating macros! Don’t
create macros, within macros, within macros …..

• Why? It’s hard to debug and just creates confusion.

• Create macro variables on things that can change (think of it as
a Parameter setting) - If it's static, you don't really need to
make it a macro variable

• End all macros with %mend <macro name> Why? It helps with
reading the code, especially, with lots of embedded macros

• Do not Replace datasets with the same name (including SQL)!
Why? You can’t debug. You may have destroyed your input
dataset and won’t be able to check any transformations.

• Do not create complex SQL Queries with tons of inner joins and
subselect queries. Why? Again, you can’t debug very easily (do
you see a theme here?)
 Break up your code into manageable sections
 People who have to audit (or get the pleasure of inheriting) your code will be

very, very thankful
5

Stop the Madness!
If You’re doing these things, stop! C’mon Man!

Do not create fancy header records. Why? It’s a waste of time to update and
“make pretty”. Use block comments that can easily be updated (for others
who might inherit your code)
Poor Header setup:
/**
PROGRAM: rock_star.sas *
AUTHOR: Jeff LaMar *
CREATED: April 2025 *

DESCRIPTION *
Rock Star list *

CHANGE HISTORY *
Apr 2025 Original program created *
May 2025 Reluctantly added Taylor Swift *
**/

Better way (take out the asterisks so you don’t have to mess with them if you
want to change something)
/**
PROGRAM: rock_star.sas
AUTHOR: Jeff LaMar
CREATED: April 2025

DESCRIPTION
Rock Star list

CHANGE HISTORY
Apr 2025 Original program created
May 2025 Reluctantly added Taylor Swift
**/

6

Error Checking / Debugging
• Remember, the Semi-colon is your friend!

 If you get an error, it should be automatic that you check for a missing Semi-
colon

• Solve errors top down. Many times errors propagate - fix the first one and re-run

• Always check your log before going any further, always, especially with PC SAS (i.e.
Do NOT run code and then open the dataset without checking the log!)

• Search for these key words when checking the log
 error
warning (note: please try to modify code where you have warnings)
 uninit (short for uninitialized) - IMPORTANT: do not discount this advice! – SAS

will give an “Uninitialized NOTE” if, in new variable assignment statement, you
try to use a variable that doesn’t exist in the DATA set. Your new variable will
exist but be totally hosed up. SAS gives a NOTE for this and not an error!

• KEY advice: Do NOT name any of your datasets or make comments containing
strings of “error”, “warning”, or “uninit” Why? You’ll pick up these strings when
you’re checking the log for the real thing.

• I like to use “issue” instead of “error”

7

Key Knowledge & Tidbits
• SAS Macros 101 - Macro Variables

• SAS Macro Variables are just a string of characters (i.e. NOT a datatype of any sort)
• SAS will resolve the macro variable as a string of characters.

Example 1 (Macro assignment and usage)
• %let drummer = Ringo; *** This assigns macro variable;
• Usage: Where top_drummer = “&drummer”; (Important note, if you need to put tick

marks around a macro variable, you need to use double quotes). The ampersand tells
SAS to resolve the macro variable.

Example 2 (including the quotes in the macro assignment)
• %let drummer = ‘Ringo’; (Note: The quotes are just part of the text string and nothing

else)
• Usage: Where top_drummer = &drummer; (Note: I don’t need quotes at all, because SAS

will resolve the string which already includes quotes needed for a character variable)

Example 3
• %let Billboard_cutoff = 25;
• Usage: Where Billboard_occurrences > &Billboard_cutoff; (The ampersand tells SAS to

grab the macro variable and will insert 25 into the code)

8

Key Knowledge & Tidbits
• SAS Macros 101 – Macro code

General Macro code:
%macro rock_it_out;

/* Only use block comments in macros */

*** Sometimes line comments mess the macro up;

< code goes here >
%mend rock_it_out;

Command to execute the macro:
%rock_it_out;

IMPORTANT TIDBIT HERE! on Apostrophes and Contractions in comments

STAY AWAY from contractions(i.e. it’s) and single apostrophes in your comments!

In certain circumstances, it’s not an issue but sometimes it is, especially with macro programming. So it’s best
to get into the habit of avoiding them all together

*** Don’t have contractions in comments; “bad” comment
/* Don’t have contractions in comments */ “bad” comment

*** Do NOT have contractions in comments: “better comment”
/* Do NOT have contractions in comments */ “better comment”

9

Key Knowledge & Tidbits
Special macro call function: CALL SYMPUTX
Purpose – To assign a value to a macro variable during the execution of a data step.
This is an EXTREMELY useful and powerful SAS function. Get to know it well!

Note: Difference between symput and symputx is that symputx removes leading and trailing
blanks before assigning the value to the macro variable

Syntax: call symputx(‘macro-var’, character-value)

Example usage: Note: run date on 5/15/2025

data _null_;
Name = 'Switchfoot';
call symputx('yyyymm',put(today(),yymmn8.));
call symputx('today',"'"||put(today(),date9.)||"'d");
call symputx('band_name',Name);
run;

%put yyyymm = &yyyymm;
%put today = &today;
%put band_name = &band_name;

Example log
%put yyyymm = &yyyymm;
yyyymm = 202505
%put today = &today;
today = ’15MAY2025'd
%put band_name = &band_name;
band_name = Switchfoot

10

The MOST useful code (looping algorithm)
The following section contains code that I have used in EVERY job over the last 15
years. This code loops through an “incoming” dataset, performs key operations, and
stacks the final results. It is extremely versatile and can be applied in multiple
situations:
Here are examples of how I’ve previously used this technique:
• Check lengths of all character variables in a dataset
• Run proc univariate on all numeric variables in a dataset
• Check table counts on all tables in a Teradata schema
• Run a distribution analysis on character variables
• Run Statistical Process Control charts / or line charts on a list of numeric variables

Code Overview:
Start with a SAS Dataset or database table
Created an “incoming” dataset that contains the key field you want to loop through

Set obs_nbr = _N_;
Set up a macro that loops through the key field (i = 1 to total_obs)

Delete temporary datasets created in the macro
Pull in the “incoming” dataset
Use Symputx to create macro variables based on a row in the incoming table
Perform operations on the “main” dataset (this varies depending on your objective)
Run proc append to stack results

Macro End
Initialize run by deleting the “appended” dataset (i.e. start fresh)
Run Looping Macro

11

The MOST useful code (looping algorithm)
Basic Code Template
The best way to explain the code is to provide an example. Use this example as your
“looping template”. I basically copied my “looping” template and adjusted accordingly.

Objective: Loop through sashelp.cars dataset and create a final dataset containing
distributions of values for all the character variables in the dataset.
SASHELP. CARS:

12

The MOST useful code (looping algorithm) - Basic Code Template

**;
*** Standard loop code;
*** Loop through the files and build the dataset;
**;
*** Start with an "incoming" dataset;
*** In this dataset, set obs_nbr = _N_ for looping;
*** Then get total observations;

**;
*** Get names of character variables from the “main dataset”;
*** In this case, it is from sashelp.cars (but it could be anything)
**;

proc contents noprint data=sashelp.cars out=char_attrs(where=(type=2) keep=name
type libname memname memlabel); run;

*** Add obs_nbr to incoming dataset (this will be used to drive the looping);
data incoming;
set char_attrs end = last;
where name NE 'Model'; *** Removing model from this analysis;
obs_nbr = _N_;
if last then call symputx('total_obs',obs_nbr);
run;

*** Get total observations for input into looping macro;
%put total_obs = &total_obs;

13

The MOST useful code (looping algorithm) - Basic Code Template Cont.

14

%macro car_dist(obs);
%do i = 1 %to &obs;
/* Use when testing - Need to comment when running else you will be in an infinite loop! */
/* %let i = 1; */

/* Read incoming dataset (row by row) and create macro variables for later use */
 data null_;
 set incoming;
 where obs_nbr = &i.;
 call symputx ('name',strip(name));
 call symputx ('libname',strip(libname));
 call symputx ('memname',strip(memname));
 run;

/* Output macro variables in log */
 %put obs=&i, name=&name, libname=&libname, memname=&memname;

/* Code goes here: could be lots of things */
/* Important!: "Standardize the length of character variables before proc append */
 proc sql;
 create table char_dist as
 select "&libname..&memname" as Dataset length=32, "&name." as Var length=32
 , &name. as Value length=32, count(1) as Counts
 from sashelp.cars(keep=&name.)
 group by 1,2,3
 order by 1,2,3
 ;
 quit;

/* In many cases, appending is done */
 proc append base=char_distributions data=char_dist; run;
/* Delete datasets created in the loop */
 proc datasets library=work nolist; delete char_dist; quit;

%end;
%mend car_dist;

The MOST useful code (looping algorithm) - Basic Code Template Cont.

15

Run the macro here:

*** Delete the appended dataset for a fresh run;
proc datasets library=work nolist; delete char_distributions; quit;

*** Run the looping macro;
%car_dist(&total_obs);

Screenshots:
Incoming:

Char_dist:

Macro Output (from 1st row of incoming):
obs=1, name=DriveTrain, libname=SASHELP, memname=CARS

The MOST useful code (looping algorithm) - Basic Code Template Cont.

16

This is just one example:
In past projects, I have pulled character
distributions from a prior month and
compared to current month. Then checked
distribution percentages for significant
distribution shifts (The technique is called
Portfolio Stability Index).

You can also do something similar with the
numeric variables and compare min, max,
#missing, etc.

Screenshots:
Final Stack (Char_distributions):

Key Knowledge – SAS Snippets
Used in both Enterprise Guide and SAS Studio

• I use snippets ALL the time! This is an extremely powerful tool
• What are SAS snippets?

• A SAS snippet is simply a reusable block of SAS code, typically containing
frequently used or complex code that you want to insert into your
program quickly and easily

• Snippets can be customized for later use which makes the programming
process more efficient

• You can insert the snippet by typing the abbreviation and hit enter
• Snippets allow you to insert “shell” code into your program which

reduces repetitive typing (and errors)
• My all-time favorite snippet I use is called “pfreq”. When I enter pfreq, it

gives me this (why type it out? I just need to fill in data and tables):

proc freq data = xxx; tables yyyy / missing list; run;

17

Presenter
Presentation Notes
Nine SNIPPET slides

Key Knowledge – SAS Snippets
How to set up in Enterprise Guide
• Type up the code you want as a snippet, highlight and “copy” (i.e. Ctrl-C)

Example:
proc freq data = xxx; tables yyyy / missing list; run;

• Click on Program/New snippet… (in PC SAS, it’s Tools/Add Abbreviation)

18

Key Knowledge – SAS Snippets
How to set up in Enterprise Guide
• Type an abbreviation name for your code snippet (I’m using pfreq)
• Paste the code you had copied previously in the “Text to insert” box (i.e. Ctrl-V)

• Click on OK
• To use in the SAS editor, type pfreq and hit enter – the following code will be pasted in

your editor:
 proc freq data = xxx; tables yyyy / missing list; run;

• And WaPow!, No more typing it out!
19

Key Knowledge – SAS Snippets
DO THIS so you won’t get burned!
• IMPORTANT NOTE: If your EG SAS gets upgraded or re-installed (i.e. You are getting a

new laptop/desktop), you will lose ALL your snippet that you have set up.
• To fix this potential problem, EACH time you create a snippet macro, export the macro

to a designated macro folder for safekeeping (looks like pfreq.kmf). See below for how:
• Click on Program/Manage macros and snippets (in PC SAS – Tools/Keyboard

Macros/Macros)

• Highlight the snippet name and click on “Export” to save to a location of your choice
• Note: As you can see, you can also “Import” a snippet (which will obviously come in

handy if you need to get your snippets back!)
20

Key Knowledge – SAS Snippets
Most Used
Snippet Examples (How to use: type in the snippet and hit “enter”)
Be creative! I usually add a “p” in front when defining the abbreviation
For the most part, don’t use real words (snippets will pop up unnecessarily)
Set up Snippets for:

1. Code you are using over and over!
2. Code where you don’t have the syntax memorized
3. Shell code

cmt (set the length you use for comments)
***;

pfreq
proc freq data = xxx; tables yyyy / missing list; run;

psql
proc sql;
create table xxxx as
select
from
join
on
where
group by
order by
;
quit;

21

Key Knowledge – SAS Snippets
Most Used cont.
Duplicate Check
Purpose: To check for “duplicate” records. This code will identify the duplicates and then merge back to
the original dataset so you can see what’s going on and code accordingly if necessary. (I use this all the
time and I mean ALL the time)

dupe
%let dupe_file = best_rock_bands;
%let dupe_key = band_name,best_song; /* add comma between names */

%let group_by = 1,2; /* Update "group by" if more than one dupe_key */
%let key1 = band_name;
%let key2 = best_song;
%let key3 = xxxx;

proc sql;
create table dupes as
select &dupe_key., count(*) as counts
from &dupe_file.
group by &group_by.
having counts > 1
;
quit;

proc sql;
create table duplify as
select b.counts, a.*
from &dupe_file. a
join dupes b
on a.&key1. = b.&key1. /* Update "on" if more than one dupe key */
and a.&key2 = b.&key2.
/*and a.&key3 = b.&key3.*/
order by a.&dupe_key.
;
quit; 22

Key Knowledge – SAS Snippets
Most Used cont.

Datasets Match Check
Purpose: To investigate and compare how two datasets match on the “by” variables.
Also check for records which show up in one dataset and not the other. (Note: Again, I
have this set this up as a macro snippet)

Note: For this code, check the log and it will indicate the observations in each dataset
for a quick assessment of what has matched and not matched.

merg
*** Prep datasets for merge;
proc sort data=table1; by var1; run;
proc sort data=table2; by var2; run;

data matched table1_only table2_only;
merge table1(in=a) table2(in=b);
by var1;
if a and b then output matched;
else if a and not(b) then output table1_only;
else if not(a) and b then output table2_only;
run;

23

Key Knowledge – SAS Snippets
Most Used cont.
Random Selection
Purpose: To Randomly select a subset of records from a dataset

“strata” is optional (for stratified sampling).
“seed” is also optional.

Note: selectall is extremely important. If you don’t use selectall and the data is
smaller than the sample size selected, you will get an error.

psurv
*** SRS - Simple Random Sampling;

proc sort data = all_bands; by band_type;

proc surveyselect noprint data=all_bands
out=all_bands_random
method = srs
seed = 8675309
sampsize=10 selectall;
strata band_type;
run;

24

Key Knowledge – SAS Snippets
Most Used cont. (especially useful in PC SAS)
The “Black Hole”

Sometimes you inadvertently have a missing quote or parenthesis, and you run some
code, then SAS gets totally messed up and goes into what I call the “Black Hole”.

How do you know you are in the Black Hole? When you submit SAS code and nothing
happens! (e.g. no output on a proc freq). If you check the log, you get no errors but no
observations and/or output. What? YOU ARE IN THE BLACK HOLE!
Run this “Black Hole” code to recover your session:

You will see a bunch of errors in your log, that’s okay. Your session should be recovered from the
black hole that sucks the life out of your code! I have a snippet for this:

black
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;
*'; *"; *); */; %mend; run;

25

Key Knowledge – Enterprise Guide
Ordered List
• It allows you to create a customized list of programs and tasks to run sequentially
• THIS is the BEST thing in EG – learn it!
• Game changer – it is why I code exclusively in EG

Your EG project could have multiple programs / tasks, but you only want to run a selected group:

Let’s say you want to run the following in order:
• Import Data
• Songs_70s
• Songs_80s
• Pathetic_90s
• Completion_email

Here’s how to do it with an ordered list:
Choose File/New/Ordered List:

26

Presenter
Presentation Notes
Ordered list has 5 slides

Key Knowledge – Enterprise Guide
Ordered List

On the Ordered List box, click on “Add” to choose your Content

27

Key Knowledge – Enterprise Guide
Ordered List

Select the first program/task you want to run
Click on “Open”

28

Key Knowledge – Enterprise Guide

Ordered List
• Continue the same process and select the program/tasks you want to run
• Note that you can move them up or down, or even remove them from the list

• Click on Save when you are finished

29

Key Knowledge – Enterprise Guide
Ordered List
• Right click on “OrderList” and rename if you want
• You can always right click and open to edit
• To run, right click and choose “Run Songs”
• And WaPow!, it will run the codes/tasks

in your list

• You can create more than one Ordered List
• Say you have a bunch of “Import Data” tasks
• You can create an ordered list to just import data
• The possibilities are endless!

• Again, this was a “Game Changer” for me!

30

Key Knowledge – Enterprise Guide
How much time will your process flow take to run?
It's difficult to predict how long a SAS process will take to run, as it depends more
upon the data than on the actual program instructions. In SAS Enterprise Guide, you
can find this information at the task level by the following:

1. Right-clicking on the task (or program node)

2. Selecting Properties

3. On the General tab, you'll see the "Last execution time".

31

Key Knowledge & Tidbits
• SAS Dates, Datetime, Time

A SAS date is a number! It is the number of days from Jan 1,
1960 to a specified date. Some of us have negative birthday
dates! Sad 
A Datetime is also a number! It is the number of seconds

between Jan 1, 1960 and a specified date and time (down to
the year/month/day/hour/minute/second)
And Time is a number. It is the number of seconds since

midnight of the current day.
For each type of variable above, you will need to assign a

format. I mainly use dates so my favorite format is mmddyy10.
(i.e. 05/13/2019). Perform a Google search on “SAS date
formats”. Here’s a useful link

https://documentation.sas.com/?docsetId=lrcon&docsetTarget=p1wj0wt2ebe2a0n1lv4lem9hdc0v.htm&docsetVersion=9.4&locale=
en

32

https://documentation.sas.com/?docsetId=lrcon&docsetTarget=p1wj0wt2ebe2a0n1lv4lem9hdc0v.htm&docsetVersion=9.4&locale=en
https://documentation.sas.com/?docsetId=lrcon&docsetTarget=p1wj0wt2ebe2a0n1lv4lem9hdc0v.htm&docsetVersion=9.4&locale=en

Key Knowledge & Tidbits
Dates cont.

• Use ‘ddmmmyyyy’d to specify a date in SAS code (i.e.’01JAN2019’D)

Example: Where rock_induction_date >= ‘01Jan2018’d;

Or if using macro variables, I highly recommend that you
include everything in the macro string (remember macro
variables are just strings of characters).
%let compare_dt = ‘01Jan2018’d;
So the code would look like this: Where rock_induction_date >=

&compare_dt;

33

Key Knowledge & Tidbits
Date variable and Date text strings – NOT the same thing
Example:

data concert_dates;
set bands;
format concert_dt_date mmddyy10.;
if Band=‘Puddle Of Mudd' then do;
 concert_dt_date = '01jun2025'd;
 concert_dt_char = '06/01/2025';
end;
run;

OUTPUT:

Key tidbit: It is important to understand that the two concert date variables have to be
handled accordingly in any future SAS processing. One is a Date data type and the
other is a Character data type – even though they look the same in the output.

34

Key Knowledge & Tidbits
Length of variables – Important when using the data step (Not an issue when using
proc SQL). Key tidbit: In Data Step programming: When you set up a character variable
assignment, SAS will set the length of the variable on the first assignment.
If you do this:

data genre;
set bands2;
if Band = 'Iron Maiden' then Genre = 'Rock';
else if Band = 'Carrie Underwood' then Genre = 'Country';
else if Band = 'BB King' then Genre = 'Blues';
run;

Your output will look like this:

35

Key Knowledge & Tidbits
Length of variables – Use the length statement to avoid “character cut-off” (Note: the
value of length needs to be greater or equal to the longest assignment length)
To fix the previous issue, do this:

data genre;
set bands2;
length Genre $8.;
if Band = 'Iron Maiden' then Genre = 'Rock';
else if Band = 'Carrie Underwood' then Genre = 'Country';
else if Band = 'BB King' then Genre = 'Blues';
run;

Your output will look like this:

36

Programming Tips
Assignment Logic audit checking

When you make assignment “logic statements” in your code, especially with complex
logic assignments, ALWAYS, and I say ALWAYS run a “Proc Freq” to check your results
Back to Genre … it’s a good practice to add “Unknown” at the end of a logic assignment and do a
proc freq to check if you captured everything.

data genre2;
set bands3;
length Genre $8.;
if Band = 'Iron Maiden' then Genre = 'Rock';
else if Band = 'Carrie Underwood' then Genre = 'Country';
else if Band = 'BB King' then Genre = 'Blues';
else Genre = 'Unknown';
run;

/* Check Assignments */
proc freq data = genre2; tables Genre*Band / missing list; run;

Output (oops! You have something that didn’t get assigned! - It’s ‘Christian’ by the way):

37

Programming Tips
Functions I love:
Intnx – to return the date after a specific number of intervals have passed. I like to
think of it as “date math”

Example1: take today’s date and set the date as the first day of the current month
Example2: take today’s date and set the date as the first day of the next month
Example3: take today’s date and go back to the same day a year ago

Note: I ran this code on 5/15/2025.
data intnx;
format today begin next year_ago mmddyy10.;
today = today();
begin = intnx('month',today,0);
next = intnx('month',today,1);
year_ago = intnx('day',today,-365);
run;

Output:

38

Programming Tips
Putting it all together with CALL SYMPUTX and INTNX
Say your dashboard month is April, 2019
%let dashmonth = 201904; /* Note: this is the only input parameter you need */

data Test;
format month_begin today prior_month mmddyy10.;
month = substr("&dashmonth",5,2);
year = substr("&dashmonth",1,4);
month_begin = mdy(month,1,year);
today = today();
prior_month = INTNX('MONTH',Today(),-1);
call symputx('month_begin_SQL',"'"||strip(year)||'-'||strip(month)||'-01'||"'");
call symputx('month_begin_SAS',"'"||put(month_begin,date9.)||"'"||'D');
call symputx('month_next_SQL',"'"||put(intnx('month',month_begin,1),yymmdd10.)||"'");
call symputx('month_next_sas',"'"||put(intnx('month',month_begin,1),date9.)||"'"||'D');
call symputx'today',put(today,year4.)||put(month(today),z2.)||put(day(today),z2.));
call symputx("prior_month",put(prior_month,YYMMN.));
run;

%put dashmonth = &dashmonth;
%put prior_month = &prior_month;
%put month_begin_SQL = &month_begin_SQL;
%put month_begin_SAS = &month_begin_SAS;
%put month_next_SQL = &month_end_SQL;
%put month_next_SAS = &month_end_SAS;
%put today = &today;

39

Programming Tips
Putting it all together with CALL SYMPUTX and INTNX
Log output

%put dashmonth = &dashmonth;
dashmonth = 201904

%put prior_month = &prior_month;
prior_month = 201903

%put month_begin_SQL = &month_begin_SQL;
month_begin_SQL = '2019-04-01'

%put month_begin_SAS = &month_begin_SAS;
month_begin_SAS = '01APR2019'D

%put month_next_SQL = &month_end_SQL;
month_next_SQL = '2019-05-01'

%put month_next_SAS = &month_end_SAS;
month_next_SAS = '01MAY2019'D

%put today = &today;
today = 20190430

40

Be creative and you can become a SAS
Rock Star, oh yeah!

41

Questions?

Contact Info:
Jeff LaMar

Jeffrey.c.lamar@wellsfargo.com
42

Appendix

43

Code Snippets
Counter Code
Purpose: To create counter variable numbers for by groups within a dataset
Note: This can be very useful for many different purposes. Keep this code handy in
your “code snippet” file.

Example1: Incoming Dataset

44

Objective
Create some “counter” variables for
further logic processing

Code Snippets
Counter Code
*** Counter with ONE by group;
*** Increment the counter for each band in the Genre;
*** Reset the counter to 1 at a new Genre;
data genre_band2;
set genre_band;
first_genre = first.genre; /*optional:so you can see the first.genre variable*/
band_counter + 1; /* Note: This is a “sum statement” */
by Genre;
if first.Genre then band_counter = 1;
Run;

45

Output
Note that the band_counter
increments with each change in Genre
(and resets back to 1)

Code Snippets
Counter Code
*** Counter with ONE by group;
*** Increment the counter for each change of Genre;
data genre_band3;
set genre_band;
first_genre = first.genre; /* optional */
by Genre;
if first.Genre then genre_counter + 1; /* This is a “Sum Statement */
run;

46

Output
Note that the genre_counter
increments with each change in
Genre.

Code Snippets
Counter Code
*** Putting both together;
data genre_band4;
set genre_band;
first_genre = first.genre; /* optional: just so you can see the first.genre
variable */
retain genre_counter 0;
band_counter + 1;
by Genre;
if first.Genre then do;
 band_counter = 1;
 genre_counter + 1;
end;
run;

47

Output
Both counters in one dataset

Code Snippets
Email Template
Purpose: To send an email after the completion of a code run. Include final condition
code for a quick assessment of the run.

Part 1: Beginning and middle of code

**;
*** Enterprise Guide email template;
**;
*** Send email after job completion which includes condition codes;
*** At the top of the code, reset the condition codes;

*** Reset condition codes for email output;
%let syscc = 0; /* SASGRID1 */

*** Get the time the SAS program started;
%let timenow=%sysfunc(datetime(),datetime.);

*** Your SAS code goes here;
*** Example below;
data genre_band2;
set genre_band;
first_genre = first.genre;
band_counter + 1;
by Genre;
if first.Genre then band_counter = 1;
Run;

48

Code Snippets
Email Template
Purpose: To send an email after the completion of a code run. Include final condition
code for a quick assessment of the run.

Part 2: Put at end of program
*** Send email after program is finished;
*** Get the time the SAS program completed;
%let timeend=%sysfunc(datetime(),datetime.);
%put timeend = &timeend;

*** Calculate minutes;
data _null_;
seconds=intck('seconds',"&timenow."dt,"&timeend."dt);
minutes = seconds/60.0;
call symput('minutes',strip(put(minutes,8.1)));
run;

filename OUTBOX email
TO=("&useremail")
FROM=("&useremail")
SUBJECT="Enterprise Guide Program Completed. Condition Code = &syscc";

data _null_;
 file outbox;
 put "Enterprise Guide Program Completed";
 put / "SASGRID SYSCC Error Code is: &syscc";
 put / "SAS program started at: &timenow";
 put / "SAS program ended at : &timeend";
 put / "SAS total run time: &minutes ";
 put / '**This email is generated from an automated SAS job
process**';
run;

49

Code Snippets
Email Template that checks condition code and sends accordingly
Purpose: To check the condition code and send an email to the appropriate audience
based on the status of the job run.
A note on &syscc (A system Automatic Macro Variable):

• If &syscc=0 then no errors and no warnings
• If &syscc=4 then no errors but at least one warning
• If &syscc=1012 or 3000 then ERRORS in code (anything above a 4 is an error!)

%macro send_email;
%if &syscc. <= 4 %then %do;

filename OUTBOX email
TO=(‘buspartner1.yourcompany.com’ ‘busparter2.yourcompany.com’)
FROM=("&useremail")
SUBJECT="Enterprise Guide Program Completed";

data _null_;
 file outbox;
 put "Enterprise Guide Program Completed";
 put / '**This email is generated from an automated SAS job
process**';
run;

%end;

50

Code Snippets
Email Template that checks condition code and sends accordingly
Purpose: To check the condition code and send an email to the appropriate audience based on the
status of the job run.

%else %do;

filename OUTBOX email
TO=("&useremail")
FROM=("&useremail")
SUBJECT="Enterprise Guide Program Completed with ERRORS.
Condition Code = &syscc";

data _null_;
 file outbox;
 put "Enterprise Guide Program Completed with ERRORS";
 put / "SASGRID SYSCC Error Code is: &syscc";
 put / "SAS program started at: &timenow";
 put / "SAS program ended at : &timeend";
 put / "SAS total run time: &minutes ";
 put / '**This email is generated from an automated SAS job
process**';
run;

%end;

%mend send_email;

%send_email;

51

	Best Tips, Tricks, and Code Snippets from 30 Years Programming in SAS�����Jeff LaMar�2025 Iowa and Nebraska SAS User Groups�May 19, 20�
	Objective
	Audience Questions
	Best Practices / Advice
	Stop the Madness!�If You’re doing these things, stop! C’mon Man!�
	Stop the Madness!�If You’re doing these things, stop! C’mon Man!�
	Error Checking / Debugging
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits
	The MOST useful code (looping algorithm)
	The MOST useful code (looping algorithm)�Basic Code Template
	The MOST useful code (looping algorithm) - Basic Code Template
	The MOST useful code (looping algorithm) - Basic Code Template Cont.
	The MOST useful code (looping algorithm) - Basic Code Template Cont.
	The MOST useful code (looping algorithm) - Basic Code Template Cont.
	Key Knowledge – SAS Snippets�Used in both Enterprise Guide and SAS Studio
	Key Knowledge – SAS Snippets�How to set up in Enterprise Guide
	Key Knowledge – SAS Snippets�How to set up in Enterprise Guide
	Key Knowledge – SAS Snippets�DO THIS so you won’t get burned!
	Key Knowledge – SAS Snippets�Most Used
	Key Knowledge – SAS Snippets�Most Used cont.
	Key Knowledge – SAS Snippets�Most Used cont.
	Key Knowledge – SAS Snippets�Most Used cont.
	Key Knowledge – SAS Snippets�Most Used cont. (especially useful in PC SAS)
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide
	Key Knowledge – Enterprise Guide�How much time will your process flow take to run?
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits�Dates cont.
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits
	Key Knowledge & Tidbits
	Programming Tips
	Programming Tips
	Programming Tips
	Programming Tips
	Be creative and you can become a SAS Rock Star, oh yeah!
	�������Questions?������Contact Info:�Jeff LaMar�Jeffrey.c.lamar@wellsfargo.com��
	Appendix
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets
	Code Snippets

